题名

短期「高住低訓」訓練方式對單次運動後人體骨骼肌肉肝醣合成之影響

并列篇名

The Influence of Short-Term Normoxic Exercise Training and Recovery in Hypoxic Condition on Glycogen Synthesis in Exercised Human Skeletal Muscle

DOI

10.6222/pej.4703.201409.1002

作者

張嘉珍(Chia-Chen Chang);廖淑芬(Su-Fen Liao);張聖良(Sheng-Liang Chang);程一雄(I-Shiung Cheng);徐孟達(Mong-Da Hsu)

关键词

運動訓練 ; 肌肉肝醣 ; 碳水化合物 ; exercise training ; muscle glycogen ; carbohydrate

期刊名称

體育學報

卷期/出版年月

47卷3期(2014 / 09 / 01)

页次

339 - 348

内容语文

繁體中文

中文摘要

目的:探討短期「高住低訓」的訓練方式,是否能提高單次運動後人體肌肉肝醣合成能力。方法:八名健康且規律運動男性進行交叉實驗設計,排空期為二十一天。受試者隨機接受每天一小時70%最大攝氧量(VO_2max)訓練且常壓常氧環境睡眠共七天(控制實驗),或每天一小時運動訓練(70%VO_2max)且常壓低氧環境睡眠十小時(低氧實驗)共七天。兩種實驗皆在第八天進行單次一小時70%VO_2max腳踏車運動,隨後採集肌肉樣本,再給予補充高碳水化合物飲食,後續第四小時執行第二次肌肉採樣。血液樣本於單次運動前後、運動後四小時期間每三十分鐘採血。研究數據以重複量數雙因子變異數分析。結果:低氧實驗在運動後肌肉肝醣濃度顯著高於控制實驗(p < .05);低氧實驗的游離脂肪酸與甘油濃度在運動前、後與運動後三十分鐘顯著低於控制實驗(p < .05);兩種實驗的血漿葡萄糖、血漿葡萄糖曲線下面積、胰島素、胰島素曲線下面積、皮質醇濃度在不同時間點皆未達顯著差異。結論:短期高住低訓可能加速運動恢復初期的人體骨骼肌肉肝醣合成速率,提高人體對醣類的利用與儲存,具肝醣超補的作用。

英文摘要

Purpose: To investigate whether short-term normoxic exercise training and recovery in hypoxic condition could enhance the glycogen synthesis in human skeletal muscle. Method: In this cross-over designed study, eight healthy males were categorized into two trials. Subjects in first trial exercised at 70% VO_2max for 60 minutes per day and recovered at sea level (control), and subjects in second trial exercised at 70% VO_2max for 60 minutes per day at sea level and recovered in a hypoxic chamber (living high and training low, LHTL) for 7 days in random order. On 8th day, subjects in both trials performed a 60-min cycling exercise at 70% VO_2max, and subsequently consumed a high carbohydrate meal. Biopsied muscle samples were obtained from vastus lateralis immediately and 4 h after exercise. Blood samples were collected before exercise, immediately after exercise, and for every 30 min during 4-h post-exercise recovery. The same procedures were repeated after three weeks washout period. Result: Muscle glycogen level response at post-exercise 4 h markedly higher in LHTL than in control (p < .05). Both of non-ester fatty acid and glycerol level were markedly lower before exercise, immediately after exercise, and 30 min during recovery period in LHTL compared to control (p < .05). However, blood glucose, blood glucose area under curve, insulin, insulin area under curve, and cortisol levels were not altered between trails (p > .05). Conclusion: LHTL could increase the rate of muscle glycogen synthesis immediately after a single bout of exercise and promote glucose uptake as result to enhance glycogen supercompensation in humans.

主题分类 社會科學 > 體育學
参考文献
  1. 祁崇溥、甘乃文(2010)。碳水化合物與蛋白質共同增補對自行車運動後肌肉損傷及肝醣合成之探討。中華體育季刊,24(3),50-63。
    連結:
  2. Beelen, M.,Burke, L. M.,Gibala, M. J.,van Loon, L. Jc.(2010).Nutritional strategies to promote postexercise recovery.International Journal of Sport Nutrition and Exercise Metabolism,20(6),515-532.
  3. Bergstrom, J.(1962).Muscle electrolytes in man determined by neutron activation analysis on needle biopsy specimens.Scandinavian Journal of Clinical and Laboratory Investigation,14(S68),1-100.
  4. Birnbaum, M. J.(2001).Diabetes: Dialogue between muscle and fat.Nature,409(8),672-673.
  5. Bonen, A.,Luiken, J. J.,Arumugam, Y.,Glatz, J. F.,Tandon, N. N.(2000).Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase.The Journal of Biological Chemistry,275(19),14501-14508.
  6. Bouissou, P.,Peronnet, F.,Brisson, G.,Helie, R.,Ledoux, M.(1986).Metabolic and endocrine responses to graded exercise under acute hypoxia.European Journal of Applied Physiology and Occupational Physiology,55(3),290-294.
  7. Braun, B.(2008).Effects of high altitude on substrate use and metabolic economy: Cause and effects?.Medicine and Science in Sports and Exercise,40(8),1495-1500.
  8. Cartee, G. D.,Douen, A. G.,Ramlal, T.,Klip, A.,Holloszy, J. O.(1991).Stimulation of glucose transport in skeletal muscle by hypoxia.Journal of Applied Physiology,70(4),1593-1600.
  9. Cermak, N. M.,van Loon, L. J.(2013).The use of carbohydrates during exercise as an ergogenic aid.Sports Medicine,43(11),1139-1155.
  10. Cheng, I. S.,Lee, N. Y.,Liu, K. L.,Liao, S. F.,Huang, C. H.,Kuo, C. H.(2005).Effect of postexercise carbohydrate supplementation on glucose uptake-associated gene expression in the human skeletal muscle.The Journal of Nutritional Biochemistry,16(5),267-271.
  11. Chiu, L. L.,Chou, S. W.,Cho, Y. M.,Ho, H. Y.,Ivy, J. L.,Hunt, D.,Kuo, C. H.(2004).Effect of prolonged intermittent hypoxia and exercise training on glucose tolerance and muscle GLUT4 protein expression in rats.Journal of Biomedical Science,11(6),838-846.
  12. Cobb, L. A.,Johnson, W. P.(1963).Hemodynamic relationships of anaerobic metabolism and plasma free fatty acids during prolonged, strenuous exercise in trained and untrained subjects.Journal of Clinical Investigation,42(6),800-810.
  13. Dimitriadis, G.,Mitrou, P.,Lambadiari, V.,Maratou, E.,Raptis, S. A.(2011).Insulin effects in muscle and adipose tissue.Diabetes Research and Clinical Practice,93(Suppl 1),S52-S59.
  14. Hawley, J. A.,Burke, L. M.,Phillips, S. M.,Spriet, L. L.(2011).Nutritional modulation of training-induced skeletal muscle adaptations.Journal of Applied Physiology,110(3),834-845.
  15. Hayashi, T.,Hirshman, M. F.,Fujii, N.,Habinowski, S. A.,Witters, L. A.,Goodyear, L. J.(2000).Metabolic stress and altered glucose transport: Activation of AMP-activated protein kinase as a unifying coupling mechanism.Diabetes,49(4),527-531.
  16. Heinonen, I.,Kemppainen, J.,Kaskinoro, K.,Peltonen, J. E.,Sipila, H. T.,Nuutila, P.,Kalliokoski, K. K.(2012).Effects of adenosine, exercise, and moderate acute hypoxia on energy substrate utilization of human skeletal muscle.American Journal of Physiology. Regulatory, Integrative and Comparative Physiology,302(3),R385-R390.
  17. Hickner, R. C.,Fisher, J. S.,Hansen, P. A.,Racette, S. B.,Mier, C. M.,Turner, M. J.,Holloszy, J. O.(1997).Muscle glycogen accumulation after endurance exercise in trained and untrained individuals.Journal of Applied Physiology,83(3),897-903.
  18. Horowitz, J. F.,Mora-Rodriguez, R.,Byerley, L. O.,Coyle, E. F.(1997).Lipolytic suppression following carbohydrate ingestion limits fat oxidation during exercise.The American Journal of Physiology,273(4 Pt 1),E768-E775.
  19. Humpeler, E.,Skrabal, F.,Bartsch, G.(1980).Influence of exposure to moderate altitude on the plasma concentraton of cortisol, aldosterone, renin, testosterone, and gonadotropins.European Journal of Applied Physiology and Occupational Physiology,45(2-3),167-176.
  20. Jeukendrup, A. E.(2011).Nutrition for endurance sports: Marathon, triathlon, and road cycling.Journal of Sports Sciences,29(Suppl 1),S91-S99.
  21. Jones, N.,Robertson, D. G.,Kane, J. W.,Hart, R. A.(1972).Effect of hypoxia on free fatty acid metabolism during exercise.Journal of Applied Physiology,33(6),733-738.
  22. Katayama, K.,Goto, K.,Ishida, K.,Ogita, F.(2010).Substrate utilization during exercise and recovery at moderate altitude.Metabolism,59(7),959-966.
  23. Kimber, N. E.,Heigenhauser, G. J.,Spriet, L. L.,Dyck, D. J.(2003).Skeletal muscle fat and carbohydrate metabolism during recovery from glycogen-depleting exercise in humans.Journal of Physiology,548(Pt 3),919-927.
  24. Kraniou, Y.,Cameron-Smith, D.,Misso, M.,Collier, G.,Hargreaves, M.(2000).Effects of exercise on GLUT-4 and glycogenin gene expression in human skeletal muscle.Journal of Applied Physiology,88(2),794-796.
  25. McCoy, M.,Proietto, J.,Hargreaves, M.(1996).Skeletal muscle GLUT-4 and postexercise muscle glycogen storage in humans.Journal of Applied Physiology,80(2),411-415.
  26. Passonneau, J. V,Lauderdale, V. R.(1974).A comparison of three methods of glycogen measurement in tissues.Analytical Biochemistry,60(2),405-412.
  27. Ren, J. M.,Semenkovich, C. F.,Gulve, E. A.,Gao, J.,Holloszy, J. O.(1994).Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle.The Journal of Biological Chemistry,269(20),14396-14401.
  28. Reynolds, T. H.,Brozinick, J. T., Jr.,Rogers, M. A.,Cushman, S. W.(1998).Mechanism of hypoxia-stimulated glucose transport in rat skeletal muscle: Potential role of glycogen.The American Journal of Physiology,274(5 Pt 1),E773-E778.
  29. Richter, E. A.,Hargreaves, M.(2013).Exercise, GLUT4, and skeletal muscle glucose uptake.Physiological Reviews,93(3),993-1017.
  30. Sano, A.,Koshinaka, K.,Abe, N.,Morifuji, M.,Koga, J.,Kawasaki, E.,Kawanaka, K.(2012).The effect of high-intensity intermittent swimming on post-exercise glycogen supercompensation in rat skeletal muscle.The Journal of Physiological Sciences,62(1),1-9.
  31. Stray-Gundersen, J.,Levine, B. D.(2008).Live high, train low at natural altitude.Scandinavian Journal of Medicine and Science in Sports,18(Suppl l),21-28.
  32. Sutton, J. R.,Viol, G. W.,Gray, G. W.,McFadden, M.,Keane, P. M.(1977).Renin, aldosterone, electrolyte, and cortisol responses to hypoxic decompression.Journal of Applied Physiology,43(3),421-424.
  33. Tiollier, E.,Schmitt, L.,Burnat, P.,Fouillot, J. P.,Robach, P.,Filaire, E.,Richalet, J. P.(2005).Living high-training low altitude training: effects on mucosal immunity.European Journal of Applied Physiology,94(3),298-304.
  34. van Loon, L. J.,Greenhaff, P. L.,Constantin-Teodosiu, D.,Saris, W. H.,Wagenmakers, A. J.(2001).The effects of increasing exercise intensity on muscle fuel utilisation in humans.Journal of Physiology,536(Pt 1),295-304.
  35. Wu, C. L.,Nicholas, C.,Williams, C.,Took, A.,Hardy, L.(2003).The influence of high-carbohydrate meals with different glycaemic indices on substrate utilisation during subsequent exercise.The British Journal of Nutrition,90(6),1049-1056.