题名

以大數據分析球員技術面表現、對戰組合與中華職棒歷年票房之相關性

并列篇名

Using big data to analyze the correlation between baseball players' performance, the matching teams, and fans attendance of Chinese professional baseball league

DOI

10.3966/10247297201712500S006

作者

許懷中(Hwai-Jung Hsu);黃致豪(Chih-Hao Huang)

关键词

棒球 ; 數據棒球 ; 職業棒球票房 ; 運動大數據 ; baseball ; sabermetrics ; professional baseball attendance ; sport big data

期刊名称

體育學報

卷期/出版年月

50卷S期(2017 / 12 / 02)

页次

79 - 90

内容语文

繁體中文

中文摘要

緒論:在棒球比賽中,賽場上有眾多元素能吸引現場觀眾,包括三振、盜壘、全壘打、投打對決等,而這些技術面表現,以及對戰組合,哪些真正能影響比賽票房,為本研究目的。研究團隊計算中職元年至27年間公開可取得的球員表現與票房之關係,以資料驅動(data-driven)的選模方法,由數據之間的關係以及資訊理論如關聯性分析、赤池信息量準則等歸納出最相關的表現參數。方法:本研究在不做任何假設的前提下,由網路爬蟲程式完整蒐集中華職棒大聯盟官網的1990到2016年每支球隊的各項數據,從6,870場比賽,714,480筆資料中歸納出中職各隊各年度之29項攻守數據,並藉由關聯性分析、線性回歸模型進行解釋性分析,剖析球隊對戰、選手表現數據包括球隊的勝率、安打數、全壘打數、保送數、三振數、為哪一隊等,對於各隊年度票房之影響,再以大數據自動建模方式將上述數據結合球隊因素,與中華職棒從創始到2016年的27年間的各隊票房做相關性分析。結果:研究結果發現全壘打、盜壘數、打者被三振頻率、失誤數、投手不被全壘打的能力、是否為兄弟象及是否為中信鯨為對球迷進場票房影響最大的幾個因素,選出模型的決定係數(R2)為0.76,解釋力十分優秀,模型內變數之p值全數小於.05。結論:球團可依此研究做為挑選新秀之方針之一,而球員也可以依研究結果加強訓練重點,所有進場球迷最想看到的是拚勁與專注度,所以失誤對票房有最大的負面影響。而全壘打的激情、將球打進場內讓球迷看到精采攻防、投手壓制對手的能力則是對票房有最大的正面幫助。

英文摘要

Introduction: The Chinese Professional Baseball League (CPBL) has been in operation for 28 years and, among all factors of player performance, including stealing bases, homeruns, strike outs, we want to find out what are the most important factors affecting fan attendance. Method: In this research, we use big data, auto model selection method to look for significant factors from all performance associated numbers, including winning percentage, hits, home runs, walks, strikeouts, and 23 other team statistics. We use a crawler program to collect data from the Chinese Professional Baseball League (CPBL) website and exam the teams' performance in more than six thousand games versus the fans' attendance of the games from 1990 to 2016, 27 years in total. We use auto model selection to find the best model and coefficients, and the most relevant factors to the fan attendance. Result: We found that errors, home runs, K/AB, steals, and pitchers' HR/AB are the most important factors that affect the attendance of CPBL. The R^2 of the selected model is 0.76, which is high correlated. All the p values in the model are less than .05. Conclusion: While errors is an indication to the fans that a player is not focused and thus drive the fans away, home runs, stealing bases, strike outs and the pitchers ability to prevent homeruns are all important factors to attract fans. The clubs can have these ideas in mind when they draft and trade players. And coaches can adjust the team's style of playing. Fans rather see the players they support play actively, stealing some bases, than wait for a walk passively.

主题分类 社會科學 > 體育學
参考文献
  1. 王忠茂(2005)。2003-2004 年中華職棒大聯盟觀眾人數之分析。中華體育季刊,19(3),53-60。
    連結:
  2. 施致平、黃蕙娟、倪瑛蓮(2010)。中華職棒比賽勝負預測模式之建構。體育學報,43(2),115-130。
    連結:
  3. 莊忠柱、陳天賜、姚為守(2004)。職業棒球主場觀眾人數的影響因素之探討─以中華職棒聯盟為例。體育學報,37,163-175。
    連結:
  4. 陳成業(2016)。觀賞性運動賽會服務品質:量表發展與驗證。體育學報,49(2),195-207。
    連結:
  5. 陳成業(2015)。環境心理學觀點探討運動賽會場館氣氛。體育學報,48(4),417-430。
    連結:
  6. 廖主民、黃鈐雯、何鈺雯(2008)。職棒球迷支持因素:戰績歸因對球迷忠誠度之預測。體育學報,41(3),43-55。
    連結:
  7. Baseball Almanac, Inc. (2017). Kansas city royals fan attendance data. from http://www.baseball-almanac.com/teams/kcratte.shtml
  8. 中華職棒大聯盟全球資訊網 (2017)。中華職棒歷年各隊逐場攻守數據,取自http://www.cpbl.com.tw/[Official website of Chinese professional baseball league (2017). Statistics of each team and player of all years. Retrieved from http://www.cpbl.com.tw/]
  9. ESPN. (2017). NBA games attendance. from http://www.espn.com/nba/attendance
  10. Ripley, B., Venables, B., Bates, P. M., Hornik, K., Gebhard, A., Firth, D., & Ripley, M. B. (2013). Package'MASS'. CRAN Repos. Httpcran R-Proj. Orgwebpackage. MASSMASS Pdf..
  11. 棒球統計 (2013)。各項棒球數據計算方法。取自http://twbsball.dils.tku.edu.tw/wiki/index.php/棒球統計[Baseball statistics. (2013). Methods for calculating different baseball statistics. Retrieved from http://twbsball.dils.tku.edu.tw/wiki/index.php/%E6%A3%92%E7%90%83%E7%B5%B1%E8%A8%88]
  12. Ahn, S. C.,Lee, Y. H.(2014).Major League Baseball attendance.Journal of Sports Economics,15(5),451-477.
  13. Cebula, R. J.(2013).A panel data analysis of the impacts of regional economic factors, marketing and promotions, and team performance on minor league baseball attendance.The Annals of Regional Science,51(3),695-710.
  14. Davis, M. C.(2008).The interaction between baseball attendance and winning percentage: A VAR analysis.International Journal of Sport Finance,3(1),58.
  15. Demmert, H. G.(1973).The economics of professional team sports.Lexington, Mass:Lexington Books.
  16. Gennaro, V.(2013).Diamond dollars: The economics of winning in baseball.Diamond Analytics.
  17. Knowles, G.,Sherony, K.,Haupert, M.(1992).The demand for major league baseball: A test of the uncertainty of outcome hypothesis.The American Economist,36(2),72-80.
  18. Kuhn, M.(2008).Care package.Journal of Statistical Software,28(5),1-26.
  19. Lim, N.(2017).Indiana University.
  20. Moore, D. S.,Notz, W.,Fligner, M. A.(2013).The basic practice of statistics.WHFreeman.
  21. Noll, R.(1974).Attendance and price setting.government and the sports business,Washington, DC:
  22. Regan, C. S.(2012).The price of efficiency: Examining the effects of payroll efficiency on Major League Baseball attendance.Applied Economics Letters,19(11),1007-1015.
  23. Schmidt, M. B.,Berri, D. J.(2001).Competitive balance and attendance: The case of Major League Baseball.Journal of Sports Economics,2(2),145-167.
  24. 王志源(2007)。臺北市=Taipei,國立臺灣師範大學=National Taiwan Normal University。
  25. 蔡銘仁(2014)。臺北市=Taipei,中國文化大學=Chinese culture university。
被引用次数
  1. 許建民,吳崇旗(2022)。職業運動賽事票房影響因素區隔及策略選擇分析。中華體育季刊,36(3),243-251。
  2. 許育嘉(2023)。漸進釋放責任模式結合開放教育資源於運動大數據分析課程之實踐。體育學報,56(S),21-35。
  3. 彭文志,陳霆峰,張凱翔,易志偉,王威堯,王志全(2020)。Badminton Coach AI:基於深度學習之羽球賽事資訊分析平台。體育學報,53(2),201-213。
  4. 彭逸坤,徐振德(2022)。以沙灘排球資料庫分析沙灘排球選手奧林匹克運動會參賽資格之策略。大專體育學刊,24(1),63-82。
  5. 詹明昇,陳鋒,陳毅,陳韋翰,陳正博(2023)。棒球比賽獲勝之關鍵打擊技戰術因素探討-以2013至2021黑豹期四強賽為例。運動表現期刊,10(1),51-61。
  6. (2024)。按讚會帶來票房?職棒球隊Facebook粉絲專頁行銷訊息效率對於觀眾入場人數之影響。體育學報,57(3),279-301。
  7. (2024)。打擊數據與球隊勝率績效評估以日本職棒為例。教育研究與實踐學刊,71(1),1-28。
  8. (2024)。資訊科技在沙灘排球競賽中情蒐工具的應用進展。臺灣體育學術研究,76,120-139。