题名

自不同弓箭步的膝關節肌群活化與力矩之比較

并列篇名

Comparison of knee joint muscle activations and moments of different plane of lunges

DOI

10.3966/102472972018095103005

作者

林建志(Jian-Zhi Lin);戴詠璇(Yong-Xuan Dai);李恆儒(Heng-Ju Lee)

关键词

垂直跳 ; 牽張縮短循環 ; 生物力學 ; reverse lunges ; electromyography ; co-contraction

期刊名称

體育學報

卷期/出版年月

51卷3期(2018 / 09 / 01)

页次

333 - 344

内容语文

繁體中文

中文摘要

緒論:弓箭步動作被廣泛地運用於增強股四頭肌與腿後肌的力量,常應用於傷後復健與運動訓練,並有助於促進肌肉共同活化。肌群之間的共同活化可以增強肌肉在執行動作時的功能,肌肉活化及關節力矩可以用來評估關節穩定性的好壞。常見的弓箭步有前、側、後弓箭步,可以訓練下肢單側肌群,調整左右兩側的差異,因此,想要了解弓箭步動作是否會因為不同方向而產生不一樣的生物力學狀態。本研究比較前、側、後三種弓箭步肌肉活化狀態、共同收縮模式及關節力矩,從中找出三種動作的生物力學特徵。方法:招募12名健康大專男性(年齡20.7 ± 1.4歲,身高174.6 ± 3.9公分,體重68.8 ± 8.5公斤)、10台Vicon紅外線攝影機(200 Hz)、Kistler測力板2塊(1000 Hz)、5個Delsys肌電電極(1000 Hz)。肌電電極黏貼於慣用腳的股直肌、股內側、股外側、股二頭與半腱肌,收集不同弓箭步動作中的肌肉活化情形,分析動作中的肌電訊號、關節力矩並計算肌肉共同活化比,為平均股四頭肌活化除以平均腿後肌活化。結果:無論下蹲期或上升期側弓箭步的股四頭肌活化皆為三種弓箭步中最大,且三種弓箭步在上升期的股四頭肌活化皆大於下蹲期;而無論下蹲期或上升後弓箭步的腿後肌活化為三種弓箭步中最大,且三種弓箭步在上升期的腿後肌活化皆大於下蹲期;側弓箭步的膝關節伸肌力矩為三種弓箭步中最大,比較共同活化發現後弓箭步的比值最趨近於1,而側弓箭步的比值最大。討論:側弓箭步較為股四頭肌主導的動作,可能會增加膝關節不穩定的機率,而增加受傷的風險,而後弓箭步因為股四頭肌與腿後肌活化比率較平衡,能提高膝關節穩定性。三種弓箭步都能促進肌肉的共同活化,只是會因為不同方向產生不一樣的肌肉活化比,因此在選擇動作的過程中,可以循序漸進的選擇膝關節穩定性最高的後弓箭步,先強化膝關節的穩定,再做前弓箭步的訓練,最後再進階到較具有挑戰性的側弓箭步,避免膝關節一開始就有過大的負荷。

英文摘要

Introduction: Lunge exercises were commonly used in injury rehabilitation and physical training to strengthen quadriceps and hamstrings. Common lunge exercises are forward, side and reverse lunge. Lunge exercises were known to facilitate the muscle co-activation during motion. The co-activation of the quadriceps and hamstrings could affect movement strategy and provide stabilization of the knee joint, joint moment could be used to assess the joint stability. Lunges could train the unilateral lower limb muscle group, adjust the posture or muscle strength compensation, thus, to identify lunges that facilitate balanced activation of the quadriceps and hamstrings might be beneficial in knee joint injury prevention and stabilization of movement. Therefore the purpose of this study was to examine the co-activation of the quadriceps and hamstrings during multiple planes of lunges. Methods: There were twelve healthy collegiate individuals volunteered to participate in this study (age 20.7 ± 1.4 yrs, height 174.6 ± 3.9 cm, weight 68.8 ± 8.5 kg). Surface EMG signals were collected by five Delsys Trigno sensors at 1000 Hz. Sensors were placed on rectus femoris, vastus lateralis, vastus medialis, biceps femoris, semitendinosus of the dominant leg. The muscle co-activation ratios (Q:H) were calculated as mean quadriceps activation divided by mean hamstring activations during movements. Results: The quadriceps activation and knee extensor moment of side lunge was greater than other two lunge exercises, the hamstrings activation of reverse lunge during descending phase and ascending was greater than other two lunge, The Q:H ratios of reverse lunge was smaller than other two lunge exercises. Conclusion: A resulting Q:H ratio equal or close to 1.0 indicates a more balanced muscle activation. The smaller Q:H ratio (close to 1.0) during descending phase of reverse lunge could be peculated that reverse lunge was a more hamstring dominant exercise than other two lunge exercises. A significant greater Q:H ratio of side lunges could indicate that a stronger quadriceps muscle activation was existed and tended to lead to greater stresses on the knee joints during descending phase.

主题分类 社會科學 > 體育學
参考文献
  1. 王令儀(2012)。從動態系統之觀點探究跑步動作中的下肢傷害風險。中華體育季刊,26(4),441-447。
    連結:
  2. 李育銘、李恆儒(2013)。不同方向的躍起著地對下肢矢狀面關節運動學、動力學和能量學的影響。體育學報,46(1),33-43。
    連結:
  3. 林建志、李育銘、李恆儒(2015)。前十字韌帶重建後運動員從事躍起著地動作時下肢關節運動與肌肉活化特徵。體育學報,48(1),45-58。
    連結:
  4. 張文星、張耀庭、黃長福、張家豪(2014)。有無從事太極拳運動對中老年人下階梯動作型態之比較。體育學報,47(4),531-540。
    連結:
  5. 黃奕銘、張雅如(2011)。前十字韌帶受傷後股四頭肌萎縮的機制:周邊神經的影響。中華體育季刊,25(3),419-426。
    連結:
  6. Alkjær, T.,Simonsen, E. B.,Magnusson, S. P.,Aagaard, H.,Dyhre-Poulsen, P.(2002).Differences in the movement pattern of a forward lunge in two types of anterior cruciate ligament deficient patients: copers and non-copers.International Journal of Sports Science & Coaching,17(8),586-593.
  7. Alkjær, T.,Wieland, M. R.,Andersen, M. S.,Simonsen, E. B.,Rasmussen, J.(2012).Computational modeling of a forward lunge: Towards a better understanding of the function of the cruciate ligaments.Journal of Anatomy,221(6),590-597.
  8. Begalle, R. L.,DiStefano, L. J.,Blackburn, T.,Padua, D. A.(2012).Quadriceps and hamstrings coactivation during common therapeutic exercises.Journal of Athletic Training,47(4),396-405.
  9. Boden, B. P.,Dean, G. S.,Feagin, J. A.,Garrett, W. E.(2000).Mechanisms of anterior cruciate ligament injury.Orthopedics,23(6),573-578.
  10. Chappell, J. D.,Creighton, R. A.,Giuliani, C.,Yu, B.,Garrett, W. E.(2007).Kinematics and electromyography of landing preparation in vertical stop-jump risks for noncontact anterior cruciate ligament injury.The American Journal of Sports Medicine,35(2),235-241.
  11. Comfort, P.,Jones, P. A.,Smith, L. C.,Herrington, L.(2015).Joint kinetics and kinematics during common lower limb rehabilitation exercises.Journal of Athletic Training,50(10),1011-1018.
  12. Cronström, A.,Ageberg, E.(2014).Association between sensory function and medio-lateral knee position during functional tasks in patients with anterior cruciate ligament injury.BioMed Central Musculoskeletal Disorders,15(1),1.
  13. Demorat, G.,Weinhold, P.,Blackburn, T.,Chudik, S.,Garrett, W.(2004).Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury.The American Journal of Sports Medicine,32(2),477-483.
  14. Dempster W. T. (1995). Space requirements of the seated operator. (PROJECT7214). Retrieved from University of Michigan, Aero medical laboratory website: Http://www.smpp.northwestern.edu/savedLiterature/DempsterEtAl.1995.pdf
  15. Ebben, W. E.,Jensen, R. L.(2002).Electromyographic and kinetic analysis of traditional, chain, and elastic band squats.Journal of Strength and Conditioning Research,16(4),547-550.
  16. Ekstrom, R. A.,Donatelli, R. A.,Carp, K. C.(2007).Electromyographic analysis of core trunk, hip, and thigh muscles during 9 rehabilitation exercises.Journal of Orthopaedic and Sports Physical Therapy,37(12),754-762.
  17. Escamilla, R. F.,Zheng, N.,MacLeod, T. D.,Imamura, R.,Edwards, W. B.,Hreljac, A.,Andrews, J. R.(2010).Cruciate ligament tensile forces during the forward and side lunge.Clinical Biomechanics,25(3),213-221.
  18. Farrokhi, S.,Pollard, C. D.,Souza, R. B.,Chen, Y. J.,Reischl, S.,Powers, C. M.(2008).Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise.Journal of Orthopaedic and Sports Physical Therapy,38(7),403-409.
  19. Foran, B.(Ed.)(2001).High-performance sports conditioning.Champaign, IL:Human Kinetics.
  20. Frigo, C.,Pavan, E. E.,Brunner, R.(2010).A dynamic model of quadriceps and hamstrings function.Gait and Posture,31,100-103.
  21. Heijne, Annetee.,Fleming, B. C.,Renstrom, P. A.,Peura, G. D.,Beynnon, B. D.,Werner, Suzanee(2004).Strain on the anterior cruciate ligament during closed kinetic chain exercises.Medicine and Science in Sports and Exercise,36(6),935-941.
  22. Hewett, T. E.,Myer, G. D.,Zazulak, B. T.(2005).Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity.Journal of Science and Medicine in Sport,11(5),452-459.
  23. Isear, J. A.,Erickson, J. C.,Worrell, T. W.(1997).EMG analysis of lower extremity muscle recruitment patterns during an unloaded squat.Medicine & Science in Sports & Exercise,29,532-539.
  24. Kellis, E.,Kouvelioti, V.(2009).Agonist versus antagonist muscle fatigue effects on thigh muscle activity and vertical ground reaction during drop landing.Journal of Electromyography and Kinesiology,19,55-64.
  25. Li, G.,Rudy, T. W.,Sakane, M.,Kanamori, A.,Ma, C. B.,Woo, S. Y.(1999).The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL.Journal of Biomechanics,32(4),395-400.
  26. Pincivero, D. M.,Aldworth, C.,Dickerson, T.,Petry, C.,Shultz, T.(2000).Quadriceps-hamstring EMG activity during functional, closed kinetic chain exercise to fatigue.European Journal of Applied Physiology,81(6),504-509.
  27. Pollard, C.,Sigward, S.,Powers, C.(2010).Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments.Clinical Biomechanics,25(2),142-146.
  28. Selseth, A.,Dayton, M.,Cordova, M. L.,Ingersoll, C. D.,Merrick, M. A.(2000).Quadriceps concentric EMG activity is greater than eccentric EMG activity during the lateral step-up exercise.Journal of Sport Rehabilitation,9(2),124-134.
  29. Stone M. H.,Collins, D.,Plisk, S.,Haff, G.,Stone, M. E.(2000).Training principles: Evaluation of modes and methods of resistance training.Journal of Strength and Conditioning Research,22(3),65.
  30. Stuart, M. J.,Meglan, D. A.,Lutz, G. E.,Growney, E. S.,An, K. N.(1996).Comparison of intersegmental tibiofemoral joint forces and muscle activity during various closed kinetic chain exercises.The American Journal of Sports Medicine,24,792-799.
  31. White, K. K.,Lee, S. S.,Cutuk, A.,Hargens, A. R.,Pedowitz, R. A.(2003).EMG power spectra of intercollegiate athletes and anterior cruciate ligament injury risk in females.Medicine and Science in Sports and Exercise,35(3),371-376.
  32. Withrow, T. J.,Huston, L. J.,Wojtys, E. M.,Ashton-Miller, J. A.(2006).The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing.The American Journal of Sports Medicine,34(2),269-274.
  33. Yeow, C. H.,Lee, P. V. S.,Goh, J. C. H.(2011).An investigation of lower extremity energy dissipation strategies during single-leg and double-leg landing based on sagittal and frontal plane biomechanics.Human Movement Science,30(3),624-635.
被引用次数
  1. 劉宗翰,陳韋翰,林羿志,林怡欣,, Tsung-Han相子元(2020)。不同坡度與速度下走跑對下肢肌肉活化的影響。華人運動生物力學期刊,17(1),33-44。