题名

人工智慧於體育運動領域之發展與運用

并列篇名

Development and application of artificial intelligence in the fields of physical education and sports

DOI

10.6222/pej.202209_55(3).0001

作者

林國欽(Kuo-Chin Lin)

关键词

人工智慧 ; 機器學習 ; 深度學習 ; 體育 ; 運動 ; artificial intelligence ; machine learning ; deep learning ; physical education ; sports

期刊名称

體育學報

卷期/出版年月

55卷3期(2022 / 09 / 01)

页次

233 - 244

内容语文

繁體中文

中文摘要

人工智慧的發展,讓機器開始有自我學習的功能,透過數據特徵建立模型以預測事件,或者是模仿人類大腦神經迴路進而層層傳遞複雜訊息,再搭配運算能力愈來愈強的硬體設備,人工智慧已然進入我們的生活。近年體育運動也開始結合人工智慧發展許多過去須仰賴大量人力才能完成的工作,如:人物追蹤與物件追蹤技術,可以更快速地了解比賽中雙方採用的戰術,以及分析比賽策略的資訊;動作辨識技術可立即提供轉播單位相關技術使用資訊;數據分析技術可提早預防運動員發生運動傷害等。由於人工智慧技術日益成熟,運用於體育運動領域的研究也會愈來愈多,語言教育機器人或運動競賽裁判機器人,也許在不久的未來將會出現在我們生活當中。

英文摘要

With the advances in artificial intelligence, machines can now integrate information and extract its features to build a predictive model of likely outcomes, providing more insights to make better decisions. An artificial neural network, which is based on the structure and functions of the human brain, is a series of algorithms that can filter information into layers of recognizable characteristics. The computational power of neural networks is increasing in parallel with improved development of hardware devices. Artificial intelligence has become inseparable from our daily lives because it assists us in many areas. In recent years, researchers in sports have begun to incorporate the tools of artificial intelligence to complete many tasks that used to rely on substantial labor inputs. For instance, player and object trajectory tracking makes it easier to understand team play tactics and to analyze the strategies used in games. Motion recognition provides broadcasting and live-streaming programs with quick information on what skills are deployed. Data analysis can prevent athletes from sustaining injuries. Thanks to the continual improvements in artificial intelligence, more and more studies on its application in sports are expected. Language-teaching and referee robots are likely to be introduced in the near future.

主题分类 社會科學 > 體育學
参考文献
  1. 王威堯, W. Y.,張凱翔, K. S.,陳霆峰, T. F.,王志全, C. C.,彭文志, W. C.,易志偉, C. W.(2020)。Badminton Coach AI:基於深度學習之羽球賽事資訊分析平台。體育學報,53(2),201-214。
    連結:
  2. 李尹鑫, Y. S.,陳家祥, C. H.,嚴笠哲, L. C.,相子元, T. Y.(2018)。自行車踩踏功率的應用與發展。體育學報,51(2),145-154。
    連結:
  3. 洪敏豪, M. H.,張吉堯, C. Y,林國全, K. C.(2019)。運動科技在羽球步伐分析之應用。中華體育季刊,33(3),165-172。
    連結:
  4. 盧紀婷, J. T,周睿信, R. X.,林祐霆, Y. T.,黃柏勳, B. X.(2021).人工智慧機器學習在重症照護單位的應用.臨床醫學月刊,87(2),97-106.
    連結:
  5. Aggarwal, C. C.(2018).Neural networks and deep learning.Springer.
  6. Bai, Z.,Bai, X.(2021).Sports big data: Management, analysis, applications, and challenges.Complexity,2021,1-11.
  7. Bini, S. A.(2018).Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will they impact health care?.The Journal of Arthroplasty,33,2358-2361.
  8. Caixia, Z.,Liguo, L.(2020).Application and innovation of artificial intelligence technology in college sports.2020 International Conference on Information Science and Education (ICISE-IE),Sanya, China:
  9. Cao, Z.,Hidalgo, G.,Simon, T.,Wei, S. E.,Sheikh, Y.(2019).OpenPose: Realtime multi-person 2D pose estimation using part affinity fields.IEEE Transactions on Pattern Analysis and Machine Intelligence,43(1),172-186.
  10. Copeland, M. (2016). What’s the difference between artificial intelligence, machine learning and deep learning? https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligencemachine-learning-deep-learning-ai/
  11. Cust, E. E.,Sweeting, A. J.,Ball, K.,Robertson, S.(2019).Machine and deep learning for sport-specific movement recognition: A systematic review of model development and performance.Journal of Sports Sciences,37(5),568-600.
  12. Ghosh, I.,Ramamurthy, S. R.,Roy, N.(2020).StanceScorer: A data driven approach to score badminton player.2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops),Austin, TX, USA:
  13. Hidalgo, G., Cao, Z., Simon, T., Wei, S. E., Raaj, Y., Joo, H., & Sheikh, Y. (2021). OpenPose. https://github.com/CMU-Perceptual-Computing-Lab/openpose
  14. Hu, H. N.,Lin, Y. C.,Liu, M. Y.,Cheng, H. T.,Chang, Y. J.,Sun, M.(2017).Deep 360 pilot: learning a deep agent for piloting through 360 sports videos.2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),Honolulu, HI, USA:
  15. Huang, Y. C.,Liao, I. N.,Chen, C. H.,İk, T. U.,Peng, W. C.(2019).Tracknet: A deep learning network for tracking high-speed and tiny objects in sports applications.2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS),Taipei, Taiwan:
  16. Intel (2021). The difference between artificial intelligence, machine learning and deep learning. https://www.intel.com/content/www/us/en/artificial-intelligence/posts/difference-between-ai-machine-learning-deep-learning.html
  17. Jiang, H.,Lu, Y.,Xue, J.(2016).Automatic soccer video event detection based on a deep neural network combined cnn and rnn.2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI),San Jose, CA, USA:
  18. Ju, N. P.,Yu, D. R.,İk, T. U.,Peng, W. C.(2020).Trajectory-based badminton shots detection [Oral presentation.2020 International Conference on Pervasive Artificial Intelligence (ICPAI),Taipei, Taiwan:
  19. Kim, B. J.,Choi, Y. S.(2020).Automatic baseball commentary generation using deep learning.35th Annual ACM Symposium on Applied Computing,Brno, Czech Republic:
  20. Kumar, D.,Sinha, A.(2020).Yoga pose detection and classification using deep learning.International Journal of Scientific Research in Computer Science, Engineering and Information Technology,6(6),160-184.
  21. Lee, H. S.,Lee, J.(2021).Applying artificial intelligence in physical education and future perspectives.Sustainability,13(1),351.
  22. Mehrasa, N.,Zhong, Y.,Tung, F.,Bornn, L.,Mori, G.(2017).Deep learning of player trajectory representations for team activity analysis.11th MIT Sloan Sports Analytics Conference,Boston, Massachusetts, USA:
  23. Myers, N. L.,Kibler, W. B.,Axtell, A. H.,Uhl, T. L.(2019).The Sony Smart Tennis Sensor accurately measures external workload in junior tennis players.International Journal of Sports Science & Coaching,14(1),24-31.
  24. Phomsoupha, M.,Laffaye, G.(2015).The science of badminton: Game characteristics, anthropometry, physiology, visual fitness and biomechanics.Sports Medicine,45(4),473-495.
  25. Russo, M. A.,Kurnianggoro, L.,Jo, K. H.(2019).Classification of sports videos with combination of deep learning models and transfer learning.2019 international conference on electrical, computer and communication engineering (ECCE),Cox'sBazar, Bangladesh:
  26. Shah, R. C.,Romijnders, R.(2016).,未出版
  27. Stetter, B. J.,Ringhof, S.,Krafft, F. C.,Sell, S.,Stein, T.(2019).Estimation of knee joint forces in sport movements using wearable sensors and machine learning.Sensors,19,3690-3701.
  28. Turing, A.M.(2009).Computing machinery and intelligence.Parsing the Turing Test
  29. Wang, Z.,Long, C.,Cong, G.,Ju, C.(2019).Effective and efficient sports play retrieval with deep representation learning.25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,Anchorage, AK, USA:
  30. Whiteside, D.,Martini, D. N.,Lepley, A. S.,Zernicke, R. F.,Goulet, G. C.(2016).Predictors of ulnar collateral ligament reconstruction in Major League Baseball pitchers.The American Journal of Sports Medicine,44(9),2202-2209.
  31. Yang, D.,Oh, E. S.,Wang, Y.(2020).Hybrid physical education teaching and curriculum design based on a voice interactive artificial intelligence educational robot.Sustainability,12(19),8000.
  32. Yoon, Y.,Hwang, H.,Choi, Y.,Joo, M.,Oh, H.,Park, I.,Lee, K. H.,Hwang, J. H.(2019).Analyzing basketball movements and pass relationships using real time object tracking techniques based on deep learning.IEEE Access,7,56564-56574.
被引用次数
  1. (2023)。建構智慧型居家安全警示系統之可行性研究。臺北海洋科技大學學報,14(2),25-38。
  2. (2024)。基於動作影像追蹤於坐姿賦能運動量化評估與分析。華人運動生物力學期刊,21(1),33-44。
  3. (2024)。臺灣運動產業生產總額預測與趨勢分析之研究。體育學報,57(1),53-75。