题名

鋰離子電池驅動之電動設備潛在熱危害評估

并列篇名

Evaluation of Thermal Hazard for Lithium-Ion Batteries in Electrical Equipments

DOI

10.7005/JOSH.201209.0372

作者

朱璨雍(Can-Yong Jhu);王義文(Yih-Wen Wang);溫家元(Chia-Yuan Wen);徐啟銘(Chi-Min Shu)

关键词

鋰離子電池 ; 電動設備 ; 熱危害 ; 緊急排放處理儀(VSP2) ; 熱爆炸 ; Lithium-ion batteries ; Electrical equipments ; Vent sizing package 2 (VSP2) ; Thermal hazard characteristics ; Thermal explosion

期刊名称

勞工安全衛生研究季刊

卷期/出版年月

20卷3期(2012 / 09 / 01)

页次

372 - 382

内容语文

繁體中文

中文摘要

鋰離子電池(Lithium-ion Battery)使用於工業上之電動手工具(Power Tools)、堆高機與電動車等設備之儲能系統日益普及,而儀器於操作使用過程中可能因大功率輸出而造成鋰離子電池暴露於高溫的操作環境,在無法有效移除熱量下,電動設備內部之鋰離子電池可能因熱失控(Thermal Runaway)發生燃燒甚至爆炸,如此造成操作之勞工可能暴露於潛在熱危害之中。本研究主要運用絕熱卡計之熱危害分析儀器-緊急排放處理儀(Vent Sizing Package 2, VSP2)針對電動設備廣泛使用之18650鋰離子電池進行失控反應之危害探討,觀察及比較其絕熱狀態下自放熱性之熱失控行為。本研究選擇普遍使用之四大商用鋰離子電池(Sony、Sanyo、Samsung及LG),主要以飽電4.2 V進行實驗,探討鋰離子電池暴露於高溫之操作環境下且超過其內部材料之穩定溫度時而產生自放熱的行為及熱累積效應導致電池發生熱爆炸的現象,從實驗獲取熱動力學參數,並推估熱失控的關鍵反應熱力學數據包括:放熱起始溫度(T0)、昇溫速率(dT/dt)、昇壓速率(dP/dt)、反應熱與絕熱溫昇(ΔT)等。由VSP2結果可知鋰離子電池會在130℃左右發生自放熱反應,飽電鋰離子電池熱爆炸之昇溫速率及昇壓速率非常急速,昇溫速率高達10,000℃/min以上,而昇壓速率亦超過10,000 psig/min,實際失控反應時間約僅數秒鐘,最高溫度更達600℃以上,因此當鋰離子電池為高能量狀態下其危害程度相當嚴重。相信本研究之結果將有助於鋰離子電池電動設備的安全使用及管理。

英文摘要

Lithium-ion batteries are broadly applied for the electrical equipments, such as power tools, electric-powered forklifts, and electrical vehicles. They expose at the high temperature environment as operation could cause thermal reuse for Li-ion battery. Therefore, the overheat for Li-ion battery pack could result in fire, explosion or burst. Furthermore, the operators could be hurt in the potential thermal hazard for battery runaway reaction.The purpose of this study was to classify the self-heat reaction of thermal runaway at adiabatic conditions for 18650 lithium-ion batteries by using vent sizing package 2 (VSP2). The commercial 18650 lithium-ion batteries for four worldwide battery manufacturers including Sony, Sanyo, Samsung and LG were selected. The voltate were charged to 4.2 V for VSP2 experiments with a customized stainless steel test can to evaluate their thermal hazard characteristics, such as onset temperature (T0), self-heating rate (dT/dt), pressure rise rate (dP/dt), adiabatic temperature rise (ΔTad), maximum temperature (Tmax) and pressure (Pmax). The results displayed that self-heat reaction of the charged batteries were exothermic at about 130°C. In addition, the dT/dt and dP/dt were measured to be over 10,000°C/min and 10,000 psi/min, respectively, and the maximum temperature was over 600°C. This study proved that hazardous ranking of Li-ion batteries that high state of charge level had thermal explosion risk. The calorimeters could be applied in electrical equipments for safe use and management.

主题分类 醫藥衛生 > 預防保健與衛生學
醫藥衛生 > 社會醫學
社會科學 > 社會學
参考文献
  1. FAI. VSP2 Manual and Methodology. Fauske and Associates LLC: Burr Ridge, Illinois 2002; USA..
  2. Al Hallaj, S.,Maleki, H.,Hong, J.S.,Selman, J.R.(1999).Thermal modeling and design considerations of lithium-ion batteries.Journal of Power Sources,83,1-8.
  3. Belov, Dmirty、洪俊睿、謝登存(2009)。電解液及隔離膜對鋰電池安全性的影響。工業材料雜誌,275,66-76。
  4. Gnanaraj, J.S.,Zinigrad, E.,Asraf, L.,Gottlieb, H.E.,Sprecher, M.,Aurbach, D.,Schmidt, M.(2003).The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Liion battery electrolyte solutions.Journal of Power Sources,119,794-8.
  5. Guerin, J.T.,Leutheuser, A.(2010).Vehicle integration issues for hybrid energy storage systems.International Journal of Energy Research,34,164-70.
  6. Jhu, C.Y.,Wang, Y.W.,Shu, C.M.,Chang, J.C.,Wu, H.C.(2011).Thermal explosions hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter.Journal of Hazardous Materials,192,99-107.
  7. Jiang, J.,Dahn, J.R.(2004).ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes.Electrochmistry Communications,6,39-43.
  8. Jiang, J.,Dahn, J.R.(2004).Effects of solvents and salts on the thermal stability of LiC6.Electrochemica Acta,49,4599-604.
  9. Lee, S.H.,Jung, J.M.,Ok, J.H.,Park, C.H.(2010).Thermal studies of charged cathode material (LixCoO2) with temperature-programmed decompositionmass spectrometry.Journal of Power Sources,195,5049-51.
  10. Lisbona, D.,Snee, T.(2011).A review of hazards associated with primary lithium and lithium-ion batteries.Process Safety and Environmental Protection,89(6),434-442.
  11. MacNeil, D.D.,Christensen, L.,Landuect, J.,Paulsen, J.M.,Dahn, J.R.(2000).An autocatalytic mechanism for the reaction of LixCoO2 in electrolyte at elevated temperature.Journal of the Electrochemical Society,147,970-9.
  12. MacNeil, D.D.,Dahn, J.R.(2002).The reactions of Li0.5CoO2 with nonaqueous solvents at elevated temperatures.Journal of the Electrochemical Society,149,912-9.
  13. Ottaway M.(2009).Lithium batteries, highly energetic materials: The varied use of adiabatic calorimetry to aid safety and battery development.37th North American Thermal Analysis Society (NATAS) Annual Conference
  14. Roth, E.P.,Doughty, D.H.(2004).Thermal abuse performance of high-power 18650 Li-ion cells.Journal of Power Sources,128,308-18.
  15. Shu, C.M.,Yang, Y.J.(2002).Using VSP2 to separate catalytic and self-decomposition reactions for hydrogen peroxide in the presence of hydrochloric acid.Thermochimica Acta,392,259-69.
  16. Wang, Y.W.,Duh, Y.S.,Shu, C.M.(2006).Evaluation of adiabatic runaway reaction and vent sizing for emergency relief from DSC calorimetry.Journal of Thermal Analysis Calorimetry,85,225-34.
  17. Weydanz, W.(2009).Power Tools: Batteries.Elsevier.
  18. Zhang, S.S.(2007).A review on the separators of liquid electrolyte Li-ion batteries.Journal of Power Sources,164,351-64.
  19. 吳弘俊(2008)。高功率鋰電池正極材料的發展現況與市場應用。工業材料雜誌,260,69-80。
  20. 張金泉(2009)。模擬在鋰離子電池熱失控機制的應用。工業材料雜誌,275,55-65。
  21. 郭政肇、楊模華(2006)。鋰電池安全性與電極材料熱分析介紹。工業材料雜誌,236,111-7。
  22. 黃可龍、王兆翔、劉素琴(2010)。鋰電池原理與技術。台北市:五南圖書出版股份有限公司。
  23. 鄭錦淑、楊長榮、許榮木(2009)。高安全性鋰電池材料。工業材料雜誌,275,77-82。
被引用次数
  1. (2024)。圓柱型鋰電池芯過熱條件之失控產氣量與熱焓計算。勞動及職業安全衛生研究季刊,32(2),11-20。