题名

分類迴歸樹於亞洲股票市場獲利能力之研究

并列篇名

The Profitability of Classification and Regression Tree in the Asian Stock Markets

DOI

10.29698/FJMR.200701.0003

作者

詹淑慧(Shu-Hui Chan);王嘉隆(Jar-Long Wang)

关键词

分類迴歸樹 ; 技術指標 ; 亞洲股票市場 ; classification and regression tree ; technical Indicators ; Asian stock market

期刊名称

輔仁管理評論

卷期/出版年月

14卷1期(2007 / 01 / 01)

页次

41 - 60

内容语文

繁體中文

中文摘要

本研究嘗試透過分類迴歸樹(Classification and Regression Tree, CART),以KD隨機指標建立一交易準則的分類樹,再對每一分類以迴歸進行分析,進而偵測買進及賣出訊號,檢驗亞洲7個股票市場於07/01/1997至04/20/2005樣本期間的獲利能力。實證結果顯示,以CART所建構的交易規則於亞洲7個市場,其平均買進及賣出日報酬差異為0.348406%(相當於年報酬83.6175%),其中,台灣、香港及日本不但平均買進及賣出日報酬差異較為顯著,而且即使扣除不同水準的交易成本後,投資報酬均大於買進持有策略,顯示以CART所建構的交易規則在這三個市場具有獲利能力。

英文摘要

This study attempts to propose an alternative way to detect the buy and sell signals by combining classification and regression tree and KD technical indicator, and use it to examine the potential profit in seven stock markets in Asia from 07/01/1997 through 04/20/2005. Average across all seven countries and across all trading rules we evaluate, mean percentage changes in stock indices on days that the rules emit buy signal exceed means on days that rules emit sell signals by 0.348406% per day, or about 83.6175% on a annualized basis. Furthermore, Taiwan, Hong Kong, and Japan demonstrate the most consistent potential profits across trading rules, as their Buy-Sell differences are more significant and their annualized returns after various pre-specified transaction costs are larger than a simple buy and hold strategy.

主题分类 社會科學 > 管理學
参考文献
  1. Alexander, Sindey. S.,P. Cootner (ed.)(1961).The Random Character of Stock Market Prices.Cambridge, Mass:MIT Press.
  2. Alexander, Sindey. S.,P. Cootner, (ed.)(1964).The Random Character of Stock Market Prices.Cambridge, Mass:MIT Press.
  3. Allen, F.,Karjalainen, R.(1999).Using Genetic Algorithms to Find Technical Trading Rules.Journal of Financial Economics,51,245-271.
  4. Baharumshah, A. Z.,Sarmidi, T.,Tan, H. B.(2003).Dynamic Linkages of Asian Stock Markets.Journal of the Asia Pacific Economy,8(2),180-209.
  5. Bailey, W.,Stulz, Z.,Yen, S.,Rhee, S.,Chan, R. (eds.)(1990).Pacific-Basin Capital Markets Research, North Holland.Amsterdam:
  6. Bessembinder, H.,Chan, K.(1995).The profitability of Technical Trading Rules in the Asian Stock Markets.Pacific-Basin Finance Journal,3,257-284.
  7. Bessembinder, H.,Chan, K.(1998).Market Efficiency and the Returns to Technical Analysis.Financial Management,27,5-17.
  8. Bollerslev, T.,Chou, R.,Kroner, K.(1992).ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence.Journal of Econometrics,52,5-59.
  9. Breiman, L.,Friedman, J. H.,Olshen, R. A.,Stone, C. J.(1984).Classification and Regression Trees.New York:Chapman & Hall.
  10. Brock, W.,Hsieh, D.,LeBaron, B.(1991).Nonlinear Dynamics, Chaos, and Instability.Cambridge, MA:MIT Press.
  11. Brock, W.,Lakonishok, J.,LeBaron, B.(1992).Simple Technical Trading Rules and the Stochastic Properties of Stock Returns.Journal of Finance,47,1731-1764.
  12. Brownstone, D.(1996).Using Percentage Accuracy to Measure Neural Network Predictions in Stock Market Movements.Neurocomputing,10,237-250.
  13. Chan, L.,Jegadeesh, N.,Lakonishok, J.(1996).Momentum Strategies.Journal of Finance,51,1681-1713.
  14. Fama, E. F.,Blume, M. E.(1966).Filter Rules and Stock Market Trading Profits.Journal of Business,39,226-241.
  15. Gencay, R.(1998).The Predictability of Security Returns with Simple Technical Trading Rules.Journal of Empirical Finance,5,347-359.
  16. Grundy, B.,Martin, S.(1998).Working Paper.Wharton School, University of Pennsylvania.
  17. Harvey, C.(1995).The Cross-section of Volatility and Autoconelation in Emerging Markets.Finanzmarkt and Portfolio Management,9,12-34.
  18. Harvey, C.(1995).Predictable Risk and Returns in Emerging Markets.Review of Financial Studies,773-816.
  19. Hinich, C. D.,Patterson, D. M.(1985).Evidence of Nonlinearity in Daily Stock Returns.Journal of Business and Economic Statistics,3,69-77.
  20. Hsieh, D.(1991).Chaos and Nonlinear Dynamics: Application to Financial Markets.Journal of Finance,5,1839-1877.
  21. Ito, A.(1999).Profits on Technical Trading Rules and Time-varying Expected Returns: Evidence from Pacific-Basin Equity Markets.Pacific-Basin Finance Journal,7,283-330.
  22. Jegadeesh, N.,Titman, S.(1993).Returns to buying Winners and Selling Losers: Implications for Stock Market Efficiency.Journal of Finance,48,65-91.
  23. Jensen, M. C.,Bennington, G.(1970).Random Walks and Technical Theories: Some Additional Evidences.Journal of Finance,25,469-482.
  24. Kamijo, K.,Tanigawa, T.(1990).Stock Price Pattern Recognition: A Recunent Neural Network Approach.IEEE International Joint Conference on Neural Networks,215-221.
  25. Kao, D. L.,Shumaker, R. D.(1999).Equity Style Time.Financial Analysts Journal,January-February,215-221.
  26. Leigh,W.,R. Purvis,J. M. Ragusa(2002).Forecasting the NYSE Composite Index with Technical Analysis, Pattern Recognizer, Neural Network, and Genetic Algorithm: a Case Study in Romantic Decision Support.Decision Support Systems,32,161-174.
  27. Neely, C.,Weller, P.,Dittmar, R.(1997).Is Technical analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach.Journal of Financial and Quantitative Analysis,32,405-426.
  28. Pan, M.,Chiou, J.,Hocking, R.,Rim, H.,Rhee, S.,Chan, R. (eds.)(1991).Pacific-Basin Capital Markets Research.Amsterdam:North Holland.
  29. Park, K.,Schoenfeld, S.(1992).The Pacific Rim Future and Options Markets.Chicago:Probus Publishing Company.
  30. Pring, M. J.(1991).Technical Analysis Explained.New York:McGraw- Hill Book Company.
  31. Rather, M.,Leal, R.P.C.(1999).Test of Technical Trading Strategies in the Emerging Equity Markets of Latin America and Asia.Journal of Banking and Finance,23,1887-1905.
  32. Refenes, A. N.,Burgess, N.,Bentz, Y.(1997).Neural Networks in Financial Engineering: a Study in Methodology.IEEE Transactions on Neural Networks,8(6),1222-1267.
  33. Saad, E.,Prokhorov, D.,Wunsch, D.(1998).Comparative Study of Stock Trend Prediction Using Time Delay, Recurrent and Probabilistic Neural Networks.IEEE Transactions on Neural Networks,9(6),1456-1470.
  34. Scholes, M.,Williams, J.(1977).Estimating Betas from Non-synchronous Data.Journal of Financial Economics,5,309-327.
  35. Sorensen, E. H.,Mezrich, J. J.,Miller, K. L.(1996).Asset Allocation-The Cart Before the Bourse.Salomon Brothers,June
  36. Sorensen, E. H.,Miller, K. L.,Ooi, C. K.(2000).The Decision Tree Approach to Stock Selection.Journal of Portfolio Management,27(1),42-52.
  37. Trippi, R. R.,Turban, E.(1993).Neural Network in Finance and Investing.Probus Publishing Company.
  38. Tsaih, R.,Hsu, Y. S.,Lai, C. C.(1998).Forecasting S&P 500 Stock Index Futures With a Hybrid Al System.Decision Support Systems,23,161-174.
  39. Willey, T.(1992).Testing for Nonlinear Dependence in Daily Stock Indices.Journal of Economics and Business,44,63-76.
  40. 余尚武、楊政麟(1998)。運用類神經網路於股價指數之套利-以日經225指數爲例。證券市場發展季刊,10(4),111-149。
  41. 李天行、陳能靜、蔡榮裕(2001)。現貨盤後期貨交易資訊內涵之研究-以新加坡交易所日經225指數期貨爲例。管理學報,18(4),567-588。
  42. 林金賢、李家豪(2003)。利用類神經模糊建構投資組合。管理學報,20(2),339-364。
  43. 苑守慈、官美蘭(2000)。透明化與個人化之股市預測分析。資訊管理學報,6(2),211-239。
  44. 游淑禎(1998)。類神經網路應用於台灣股市預測:統合基本面與技術面資訊。證券市場發展季刊,10(3),97-134。
  45. 黃國棟、許中川、黃金生(2002)。回饋式類神經網路知識發掘應用於最適投資組合資金配置。中山管理評論,10(4),651-682。
被引用次数
  1. 盧嘉梧、林志軒(2016)。類神經網路投資組合策略績效之實證研究:以台灣中型100電子股為例。輔仁管理評論,23(3),29-50。