题名

厚尾GARCH模型之波動性預測能力比較

并列篇名

Comparison of the Volatility-Predicting Ability between Heavy-Tailed GARCH Models

DOI

10.29698/FJMR.200705.0003

作者

李命志(Ming-Chih Lee);洪瑞成(Jui-Cheng Hung);劉洪鈞(Hung-Chun Liu)

关键词

GARCH ; 厚尾 ; 波動性預測 ; GARCH ; Fat-Tailed ; Volatility predicting

期刊名称

輔仁管理評論

卷期/出版年月

14卷2期(2007 / 05 / 01)

页次

47 - 71

内容语文

繁體中文

中文摘要

本文分別以Gaussian GARCH模型、GARCH-GED模型、GARCH-HT模型,探討資產報酬率普遍存在高峰、厚尾現象時,何種分配的模型對於波動率具有較佳的相對預測能力。 實證結果顯示,在五種實證資料當中,GARCH-GED模型與GARCH-HT模型在不同條件平均數方程式假設下,相對預測能力都比Gaussian GARCH模型佳。GARCH-HT模型的相對預測能力則優於GARCH-GED模型。當以平均絕對誤差(MAE)作為評估準則,模型的優劣順序並沒有因為使用不同的衡量準則而發生改變。刪除極端值後,發現所有預測模型在不同條件平均數方程式設定下之MSE與MAE均明顯下降許多(除布朗特原油外),而重複進行DM檢定的結果亦指出模型的相對預測能力與刪除極端值之前的結論一致。特別的是,極端值確實會影響模型對波動性預測的績效。 本文採用移動視窗的方式進一步探討由Politis (2004)提出的厚尾分配與常見的GED分配再結合GARCH模型進行樣本外預測波動性的優劣。當改以同樣具備高峰、厚尾特性的GED分配與HT分配作比較時,更得以凸顯HT分配的優勢。再者,以DM檢定來呈現三種不同誤差項分配假設下GARCH(1,1)模型之間的相對預測能力亦較為恰當。

英文摘要

In this paper, Gaussian GARCH, GARCH-GED, and GARCH-HT (Politis, 2004) models are used to discuss the relative out-of-sample volatility predicting ability when the distribution of returns exhibits leptokurtic and fat-tailed. Empirical findings indicate that the relative out-of-sample volatility predicting ability of GARCH-GED model and GARCH-HT model are both superior to Gaussian GARCH model while GARCH-HT model performs better than GARCH-GED model under alternative conditional mean specifications. The performance ranking among these three models remains constant when using the mean absolute error (MAE) as the loss function. After removing outliers, except for Brent Europe, we found that both MSE and MAE have dropped substantially for all models and all conditional mean specifications. Meanwhile, the DM statistics show that the relative predictive ability is consistent with the result before removing outliers. Particularly, outliers certainly confound the relatively predictive performance. To sum up, this paper adopts rolling-window scheme to further examine out-of-sample volatility predicting ability among Gaussian GARCH, GARCH-GED and GARCH-HT models. In comparison with GED distribution, HT distribution reveals its predominance when returns exhibit leptokurtic and fat-tailed. Moreover, it is more appropriate to use DM test to demonstrate the relative out-of-sample volatility predicting ability among these three GARCH(1,1) models.

主题分类 社會科學 > 管理學
参考文献
  1. Akgiray, V.(1989).Conditional Heteroscedasticity in Time Series of Stock Return: Evidence and Forecasts.Journal of Business,62,55-80.
  2. Andersen, T. G.,Bollerslev, T.(1998).Answering the Skeptics:Yes, Standard Volatility Models do Provide Accurate Forecasts.International Econometric Review,39,885-905.
  3. Armstrong, J. S.,Collopy, F.(1992).Errors Measures for Generalizing about Forecasting Methods: Empirical Comparisons.International Journal of Forecasting,8,69-80.
  4. Awartani, B. M. A.,Corradi, V.(2005).Predicting the Volatility of the S&P-500 Stock Iindex via GARCH Models: the Role of Asymmetries.International Journal of Forecasting,21,167-183.
  5. Bollerslev, T.(1987).A Conditional Heteroscedastic Time Series Model for Speculative Prices and Rates of Return.Review of Economics and Statistics,69,542-547.
  6. Bollerslev, T.(1986).Generalized Autoregressive Conditional Heteroscedasticity.Journal of Econometrics,31,307-327.
  7. Bollerslev, T.,Chou, R. Y.,Kroner, K. F.(1992).ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence.Journal of Econometrics,52,5-59.
  8. Brailsford, T. J.,Faff, R. W.(1996).An Evaluation of Volatility Forecasting Techniques.Journal of Banking and Finance,20,165-185.
  9. Christoffersen, P.,Diebold, F.(2000).How Relevant is Volatility Forecasting for Financial Risk Management?.Review of Economics and Statistics,82,12-22.
  10. Diebold, F. X.,Mariano, R. S.(1995).Comparing Predictive Accuracy.Journal of Business and Economic Statistics,13,253-263.
  11. Engle, R.(1982).Autoregressive Conditional Heteroscedasticity with Estimates of Variance of UK Inflation.Econometrica,50,987-1008.
  12. Engle, R.,Bollerslev, T.(1986).Modeling the Persistence of Conditional Variance.Econometric Reviews,5,1-50.
  13. Fama, E.(1965).The Behavior of Stock Market Prices.Journal of Business,38,34-105.
  14. Heynen, R. C.,Kat, H. M.(1994).Volatility Prediction: A Comparison of the Stochastic Volatility, GARCH(1,1) and EGARCH(1,1) Models.Journal of Derivatives,2,50-65.
  15. Inoue, A.,Kilian, L.(2005).In Sample or Out of Sample Tests for Predictability: Which One Should We Use?.Econometric Reviews,23,371-402.
  16. Makridakis, S.(1993).Accuracy Measures: Theoretical and Practical Concerns.International Journal of Forecasting,9,527-529.
  17. Mandelbrot, B.(1963).The Variation of Certain Speculative Prices.Journal of Business,36,394-419.
  18. Markowitz, H.(1952).Portfolio Selection.Journal of Finance,7,77-91.
  19. Nelson, D.(1991).Conditional Heteroscedasticity in Asset Returns: A New Approach.Econometrica,59,347-370.
  20. Politis, N. D.(2004).A Heavy-Tailed Distribution for ARCH Residuals with Application to Volatility Prediction.Annals of Economics and Finance,5,283-298.
  21. Sadorsky, P.(2006).Modeling and Forecasting Petroleum Futures Volatility.Energy Economics,28,467-488.
  22. 吳佳貞(1998)。政治大學金融研究所。
  23. 呂文正(1998)。台灣大學經濟研究所。
  24. 黃弘文(1998)。中興大學統計研究所。
被引用次数
  1. 劉洪鈞、洪瑞成、李彥賢(2008)。厚尾分配之風險值估計—以股價指數為例。中原企管評論,6(1),75-98。
  2. 劉洪鈞、張高瑩(2010)。以不同代理變數評估GARCH族模型之金融市場波動預測績效。績效與策略研究,7(1),1-16。
  3. 蘇榮斌、劉洪鈞、林東虨(2007)。限制最小平方法波動性預測能力之評價。真理財經學報,17,65-90。