题名

金融產品創新及其定價:移動平均交換選擇權

并列篇名

Financial Products Innovation and Their Pricing: Moving Average Exchange Options

作者

韓千山(CHIEN-SHAN HAN);邱嘉洲(CHIA-CHOU CHIU);蔡鎮宇(CHEN-YU TSAI);簡榮治(JUNG-CHIH CHIEN)

关键词

移動平均交換選擇權 ; 移動平均 ; 交換選擇權 ; 歐式選擇權 ; moving average exchange options ; moving average ; exchange options ; European options

期刊名称

輔仁管理評論

卷期/出版年月

27卷2期(2020 / 05 / 01)

页次

1 - 37

内容语文

繁體中文

中文摘要

本文探討金融產品創新及其定價,討論移動平均交換選擇權。本文主要是延伸Margrabe(1978)歐式交換選擇權,將其報償-二項資產價格正差距,延伸為以算術或幾何計算二項資產價格移動平均正差距。一般選擇權分為歐式與美式。美式選擇權價值相當於歐式選擇權價值加上提前履約溢酬(early exercise premium)。尤有甚者,美式選擇權不會提前履約情況發生時,則歐式選擇權等價於美式選擇權。因此,本文提供歐式選擇權的觀點,有助於探討該選擇權特性。另外,以股票資產為例,股票移動平均價格視為交易實務上股票陸續出售或分開時段變現時投資組合之平均價值,亦或股票陸續買進或分開時段佈局時投資組合之平均建構成本。而且,在股票價差交易(spread trade)的交易實務上,移動平均交換選擇權亦提供良好的避險工具。最後,本文提供數值積分法與(解析)封閉解法等評價歐式算術、幾何移動平均交換選擇權,運用蒙地卡羅法佐證其精確性,並且提供風險衡量,例如,Delta, Gamma等,運用於該選擇權之風險管理及其投資組合避險等工作。

英文摘要

This article explores financial products innovation and their pricing, and discusses moving average exchange options. This article is mainly to extend Margrabe (1978) European exchange option. The payoff of this financial products is innovated by mea ns of arithmetic or geometric mean, from a positive difference of the prices of two assets c hose n to positive difference of moving average prices of two assets c hosen. However, options are either European or American (style) options, and in theory, the value of America n options are equal to the value of European options plus the early exercise premium. But, when early exercise of the opt ions is not optimal, American options are equivalent to European options. Therefore, this article provides a view of Europe an options, which helps to explore the characteristics of these options. In trading practice, taking stock assets as an example, the average moving stock price is regarded as the average value of the selling investment portfolio, or the average construction value of the buying investment portfolio, especially when the stocks are bought or sold successively or separately. In addition, in case of stock spread trade, a moving average exchange option also provides a good hedging tool. Finally, t his paper provides numerical integration and (analytic ) closed-solution to evaluate European-style arithmetic and geometric moving average exchange options, using Monte Carlo to prove its accuracy. We also provide risk measurements, for example, Delta, Gamma, etc. It is used in the risk management of this option and its hedging portfolios.

主题分类 社會科學 > 管理學
参考文献
  1. Black, F.,Scholes, M.(1973).The Pricing of Options and Corporate Liabilities.Journal of Political Economy,81(3),637-654.
  2. Boyle, P.,Broadie, M.,Glasserman, P.(1997).Monte Carlo Methods for Security Pricing.Journal of Economic Dynamics and Control,21(8-9),1267-1321.
  3. Dai, M.,Li, P. F.,Zhang, J. E.(2010).A Lattice Algorithm for Pricing Moving Average Barrier Options.Journal of Economic Dynamics and Control,34(3),542-554.
  4. Dai, T. S.,Fang, Y. Y.,Lyuu, Y. D.(2005).Analytics for Geometric Average Trigger Reset Options.Applied Economics Letters,12(13),835-840.
  5. Heritage, J. P.(2002).Pricing Moving Average Barrier Options.Journal of Computational Finance,5(4),51-67.
  6. Kao, C. H.,Lyuu, Y. D.(2003).Pricing of Moving-average-type Options with Applications.Journal of Futures Markets,23(5),415-440.
  7. Kemna, A. G. Z.,Vorst, A. C. F.(1990).A Pricing Method for Options Based on Average Asset Values.Journal of Banking and Finance,14(1),113-129.
  8. Levy, E.(1992).Pricing European Average Rate Currency Options.Journal of International Money and Finance,11(5),474-491.
  9. Margrabe, W.(1978).The Value of an Option to Exchange One Asset for Another.The Journal of Finance,33(1),177-186.
  10. Merton, R. C.(1973).Theory of Rational Option Pricing.The Bell Journal of Economics and Management Science,4(1),141-183.
  11. Milevsky, M. A.,Posner, S. E.(1998).Asian Options, the Sum of Lognormals, and the Reciprocal Gamma Distribution.The Journal of Financial and Quantitative Analysis,33(3),409-422.
  12. Turnbull, S. M.,Wakeman, L. M.(1991).A Quick Algorithm for Pricing European Average Options.The Journal of Financial and Quantitative Analysis,26(3),377-389.
  13. Vorst, T.(1992).Prices and Hedge Ratios of Average Exchange Rate Options.International Review of Financial Analysis,1(3),179-193.
被引用次数
  1. 韓千山,莊雅竹,邱嘉洲(2020)。No Arbitrage Pricing of Cross Currency Moving Average Exchange Options。輔仁管理評論,27(3),37-66。