题名 |
利率期限結構變動與公債投資組合免疫策略 |
并列篇名 |
Term Structure Movements and Government Bond Portfolio Immunization Strategy |
作者 |
周建新(Jian-Hsin Chou);于鴻福(Hong-Fwu Yu);張千雲(Chien-Yun Chang);楊孟波(Meng-Po Yang) |
关键词 |
Parsimonious模型 ; 利率期限結構 ; 免疫策略 ; Parsimonious model ; The term structure of interest rate ; Portfolio immunization strategy |
期刊名称 |
企業管理學報 |
卷期/出版年月 |
59期(2003 / 12 / 01) |
页次 |
97 - 122 |
内容语文 |
繁體中文 |
中文摘要 |
本文係利用Nelson and Siegel(1987)的parsimonious模型,來估計國內公債市場之利率期限結構,並以高斯-牛頓法求解Nelson and Siegel (1987)所須之四個參數,再代入算出當期之即期利率。在考慮期限結構變動的情況下,比較M-Square、M-Absolute、M-Vector等不同債券投資組合免疫模型之績效;此外並比較不同之再調整頻率之免疫績效,期望找出最適合台灣公債投資組合的再調整頻率。本文發現:(1)單純以報酬率來看,不同免疫模型的報酬率大多高於目標報酬率,但若就免疫意義,實際報酬率鎖住目標報酬率而言,以M-Vector 策略有較佳之免疫績效;(2)就免疫風險來看,其中以M1 策略有最低的免疫風險,為最適的公債投資組合免疫策略;(3)在考慮交易成本下,結果發現以「年」為最佳之再調整頻率。 |
英文摘要 |
This paper uses the parsimonious model proposed by Nelson & Siegel (1987) to estimate the term structure of interest rate for the Taiwan Government Bond market. The Gauss-Newton method is implemented to estimate the parameters embedded in the parsimonious model. The M-Square、M-Absolute and M-Vector models are designed to compare the immunization performance of different bond portfolio. Also, this paper tries to find the best re-adjustment frequency of immunization model for the Taiwan Government Bond portfolio. Empirical tests show that: (1) The rate of return among different testing model is higher than the target return in our empirical period, and the M-Vector has the best performance; (2) Comparing the immunization risk of different model, M1 model has the lowest immunization risk, and it will be the best model among all the immunization models tested; (3) Including the transaction costs, the bond portfolio adjusted with a yearly basis, has the best immunization performance. |
主题分类 |
社會科學 >
經濟學 社會科學 > 管理學 |
参考文献 |
|
被引用次数 |