题名

次貸風暴前後外匯匯率風險值之比較分析-以美元兌英鎊、歐元、日圓與新台幣為例

并列篇名

A Comparative Analysis of Foreign Exchange Rate on Value at Risk under Sub-Prime: Example of USD against GBP, EUR, JPY and NTD

作者

許英麟(Ying-Lin Hsu);陳弘吉(Horng-Chi Chen);徐孟資(Meng-Zi Hsu)

关键词

次貸風暴 ; 風險值 ; 歷史模擬法 ; 變異數-共變異數模擬法 ; 蒙地卡羅模擬法 ; ARMA-GARCH模擬法 ; Sub-prime ; Value at risk ; Historical simulation approach ; Monte carlo simulation approach ; Variance-covariance simulation approach ; ARMA-GARCH simulation approach

期刊名称

企業管理學報

卷期/出版年月

93期(2012 / 06 / 01)

页次

15 - 45

内容语文

繁體中文

中文摘要

本文旨在探討次貸風暴對外匯市場風險值(value at risk, VaR)提列,運用不同風險值模型包括歷史模擬法、蒙地卡羅模擬法、變異數-共變異數模擬法與ARMA-GARCH模擬法,計算美元兌英鎊、歐元、日元與新台幣在次貸風暴前後的風險值影響。經實證結果發現,ARMA-GARCH法所估計之匯率最具保守性與準確性,穿透率與條件覆蓋檢定最佳;然而就效率性而言,以蒙地卡羅法所估計出的效率性最佳,可使匯率達到保守的估計。因此本文再以ARMA-GARCH法提列風險值發現,各匯率在次貸風暴後所需計提之風險值皆較次貸風暴前為多,其中以英鎊與日圓的風險值波動幅度與風險值提列幅度最大。

英文摘要

This study applies to the foreign exchange determination of value at risk under Sub-Prime, using different value at risk models such as historical simulation approach, Monte Carlo simulation approach, variance-covariance simulation approach and ARMA-GARCH simulation approach to calculate GBP, EUR, JPY and NTD against USD before and after Sub-Prime. The empirical result indicates that the ARMA-GARCH simulation approach estimates exchange rate conservatism, accuracy, violation rate with better conditional coverage test. For the efficiency, The Monte Carlo estimation performs the best with conservative exchange rate. In this study, we apply ARMA-GARCH again on value and risk determination. All currencies have more values and risks to be considered than before the crisis. Among them, both GBP and JPY have the biggest risk value on fluctuation rate and range.

主题分类 社會科學 > 經濟學
社會科學 > 管理學
参考文献
  1. Engle, J. & Gizycki, M. (1999). Conservatism, Accuracy and Efficiency: Comparing Value-at-Risk Models. Working Paper, Australian Prudential Regulation Authority
  2. Dornbush. & Rudiger. (1998). Capital Controls: An Idea Whose Time Is Gone. Working paper, Massachusetts Institute of Technology, Cambridge, Mass. Retrieved from www.mit.edu/rudi/
  3. Alexander, C. O.,Leigh, C. T.(1997).on the covariance matrices used in value at risk models.The Journal of Derivatives,4(3),50-62.
  4. Beder, T.(1995).VaR: Seductive but Dangerous.Financial Analysts Journal,51,12-24.
  5. Bollerslev, T.(1986).Generalized Autoregressive Conditional Heteroscedasticity.Journal of Econometrics,31,307-327.
  6. Bollerslev, T.,Chou, R. C.,Kroner, K. F.(1992).ARCH Modeling in Finance: A review of the Theory and Empirical Evidevce.Journal of Econometrics,52,5-59.
  7. Christoffersen, P.(1998).Evaluating Interval Forecasts.International Economic Review,39,841-862.
  8. Day, T. E.,Lewis, C. M.(1992).Stock Market Volatility and the 0.000ormation Content of Stock Index Options.Journal of Econometric,52,267-287.
  9. Engle, R.(1982).Autoregressive Conditional Heteroscedasticity with Estimation of the Variance in U.K. 0.000lation.Econometrica,50,987-1008.
  10. Goorbergh, R. V. D.,Vlaar, P.(1999).DNB Staff ReportsDNB Staff Reports,未出版
  11. Hendricks, D.(1996).Evaluation of Value-at-Risk Models Using Historical Data.Economics Ploicy Review,2,39-69.
  12. Jorion, P.(2000).Value at Risk: The New Benchmark for Controlling Market Risk.Chicago:Irwin.
  13. Jorion, P.(1996).Risk: Measuring the Risk in Value at Risk.Financial Analysts Journal,52,47-56.
  14. Kat, H. M.,Heynen, R. C.(1994).Volatility prediction: A comparison of the stochastic volatility, GARCH (1, 1) and EGARCH (1, 1) models.Journal of Derivatives,2,50-65.
  15. Kupiec, P. H.(1995).Techniques for Verifying the Accuracy of Risk Measurement Models.The Journal of Derivatives,3(2),73-84.
  16. Lamoureux, C. G.,Lastrapes, W. D.(1993).Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatility.The Review of Financial Studies,6(2),293-326.
  17. Linsmeier, T.,Pearson, N. D.(2000).Value at Risk.Financial Analysts Journal,56,47-67.
  18. Morgan, J. P.(1995).Riskmetrics Technical Manual.NY:J. P. Morgan.
  19. West, K. D.,Edison, H. J.,Cho, D.(1993).A Utility-Based Comparison of Some Models of Exchange Rate Volatility.Journal of International Economics,35,23-45.
  20. 辛喬利、孫兆東(2009)。次貸風暴:撼動世界經濟的金融危機,剖析次貸風暴的前因後果。台北:梅霖文化事業有限公司。
  21. 高儷芳(2006)。碩士論文(碩士論文)。輔仁大學應用統計學研究所。
  22. 康健廷(2003)。碩士論文(碩士論文)。國立台北大學企業管理學研究所。
  23. 張孟惠(2008)。碩士論文(碩士論文)。朝陽科技大學財務金融所。
被引用次数
  1. 彭開瓊、張慧雯、張佳雯(2014)。黃衫軍事件對泰國基金影響。東亞論壇,483,71-86。