题名

應用資訊圖表自動化更新技術於企業決策之研究

并列篇名

A Research of Applying Automatic Updated Data Charts in Business Decision Making

作者

楊聖閔(Yang, Sheng-Min);王素華(Wang, Su-Hua);黃貞芬(Huang, Chen-Fen);王文良(Wang, Abraham W.L)

关键词

開放性資料 ; 資料異動偵測 ; 資料視覺化 ; 視覺化圖表 ; open data ; data transaction detection ; data visualization ; visualization charts

期刊名称

聯大學報

卷期/出版年月

16卷2期(2019 / 12 / 01)

页次

107 - 141

内容语文

繁體中文

中文摘要

資料本身隱含著有價值的資訊,決策者需要正確完整的資料進行決策以提升企業的競爭力。決策資料的來源不僅僅是來自於企業內部的資料,企業外部的開放性資料更是企業決策重要的基礎。開放性資料的來源不盡相同,會隨著時間而異動,龐大複雜的資料需要耗費大量的時間進行閱讀和分析。本研究提出一個資訊圖表自動化更新之多功能模組架構,資料分析師可以將多樣化的資料來源上傳至模組中,並且利用資料格式標準化將資料轉換成統一格式。本模組可偵測資料異動並更新資料,並透過視覺化工具建置成資訊圖表,幫助決策者更快速地解析資料中所表達的涵義。本模組並可透過加密技術將資訊圖表產生至企業專屬的網址,分享給企業相關的決策者進行,以達到資訊分享的目的。本模組利用多個開放資料來源作進行系統的測試與評估,結果顯示確實能夠有效解決多樣化資料來源的問題,將可以降低使用者在解析資料上的負擔,讓決策者們可以在企業中更加便利地傳遞資訊。

英文摘要

As data conceal valuable and useful information, decision-makers always need a systematic way to use these data to enhance the competitiveness of their enterprises. Data acquisition is not restricted to be done solely from internal sources, but can also be acquired by other open data sources from outside of an enterprise, which are also very important for the purpose of decision making. However, the acquired open data may originate from many different sources and may change over time. Most of all, the broadness and complexity of these data will need to be reviewed and analyzed with lots of effort as well. In this paper, we propose a multi-functional module which can automatically convert and update the acquired data into visualization charts. Data analysts can upload a variety of data sources to the module which will then be converted into a uniform format through standardization process. The data of the module will be updated if it detects data transaction and convert the data into charts through the visualization tools, which will immediately help the decision-makers understand and analyze what is contained in the data. This module also applies the encryption technology to generate useful charts to the company's own website and share the information with relevant decision-makers so that the purpose of data sharing can be achieved. The module has been tested and evaluated with multiple open data sources. The results show that it can effectively solve the problem of diversified data sources and integrate the data sources. It can also reduce the burden for the data analysts in analyzing the data, and make it much easier for decision-makers in delivering the information in the enterprise.

主题分类 人文學 > 人文學綜合
人文學 > 歷史學
基礎與應用科學 > 基礎與應用科學綜合
社會科學 > 社會科學綜合
参考文献
  1. 謝元晟,程美華,張光昭(2016)。運用 R 建立文字探勘平台應用於電視收視率預測。Journal of Data Analysis,11(3),109-134。
    連結:
  2. 羅晉,楊東謀,王慧茹,項靖(2014)。政府開放資料的策略與挑戰:使用者觀點分析。電子商務研究學刊,12(3),283-300。
    連結:
  3. Ali, S. M.,Gupta, N.,Nayak, G. K.,Lenka, R. K.(2016).Big data visualization: Tools and challenges.2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)
  4. Aydin, G.,Hallac, I. R.,Karakus, B.(2015).Architecture and implementation of a scalable sensor data storage and analysis system using cloud computing and big data technologies.Journal of Sensors,Article ID 834217.
  5. Cackett, D.,Bond, A.,Gouk, J.(2013).Information management and big data a reference architecture.
  6. Chen, T. F.,Chang, K. H.,Tsai, C. Y.(2014).Modeling direct and indirect effect of long range transport on atmospheric PM2.5 levels.Atmospheric Environment,89,1-9.
  7. Choi, T. M.,Chan, H. K.,Yue, X.(2017).Recent development in big data analytics for business operations and risk management.IEEE transactions on cybernetics,47(1),81-92.
  8. Chu, Y. H.,Kao, S. W.,Tantoh, D. M.,Ko, P. C.,Lan, S. J.,Liaw, Y. P.(2018).Association between fine particulate matter and oral cancer among Taiwanese men.Journal of Investigative Medicine
  9. D3. (2018). “D3 Data-Driven Documents 官方網站.” Retrieved from https://d3js.org/
  10. Di, J.,Li, W.(2017).Study on government strategy of transformation from information publishing to data opening.2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)
  11. Ferguson, M.(2012).A Whitepaper Prepared for IBMA Whitepaper Prepared for IBM,IBM.
  12. Google Charts. (2018). “Google Charts 官方網站.” Retrieved from https://developers.google.com/chart/
  13. Goyal, G.,Singh, K.,Ramkumar, K.R.(2017).A detail analysis of data consistency concepts in data exchange formats (JSON & XML).2017 Intetnational Conference on Computing, Communication and Automation (ICCCA)
  14. Greer, C. F.,Ferguson, D. A.(2015).Tablet computers and traditional television (TV) viewing: Is the iPad replacing TV?.The International Journal of Research into New Media Technologies,21(2),244-256.
  15. Gu, D.,Li, J.,Li, X.,Liang, C.(2017).Visualizing the knowledge structure and evolution of big data research in healthcare informatics.International journal of medical informatics,98,22-32.
  16. Gurin, J.(2014).Open Data Now: The secret to hot startups, smart investing, savvy marketing, and fast innovation.New York, NY:McGraw-Hill.
  17. Hill, S.(2014).TV audience mesurement with big data.BIG DATA,2(2),76-86.
  18. Imamura, K.,Shinohara, K.,Umano, M.,Tamura, H.,Sawada, K.(1999).Extraction of typical and exceptional fuzzy rules from data including qualitative and quantitative attributes.FUZZ-IEEE’99. 1999 IEEE International Fuzzy Systems Conference Proceedings
  19. Intel IT Center(2013).Big data visualization: Turning big data into big insights.
  20. Kandogan, E.(2012).Just-in-time annotation of clusters, outliers, and trends in point-based data visualizations.2012 IEEE Conference on Visual Analytics Science and Technology(VAST)
  21. Kapil, G.,Agrawal, A.,Khan, R. A.(2016).A study of big data characteristics.2016 International Conference on Communication and Electronics Systems (ICCES)
  22. Machlis, S.(2016).Machlis, S. (2016). Chart and image gallery:30+ free tools for data visualization and analysis. Data & Analytics, Computerworld..
  23. Mhaisgawali, A.,Giri, D. N.(2014).Detailed descriptive and predictive analytics with Twitter based TV ratings.International Journal of Computing and Technology,1(4),125-130.
  24. Microsoft. (2016). “Microsoft 官方網站.” Retrieved from https://msdn.microsoft.com/en-us
  25. Open Knowledge International. (2018). “Open Knowledge International官方網站.” Retrieved from https://okfn.org/
  26. Pokorny, J.(2000).XML functionally.International Database Engineering and Applications Symposium
  27. R 語言. (2018). “R 語言官方網站.” Retrieved from https://www.r-project.org/
  28. Raghav, R. S.,Pothula, S.,Vengattaraman, T.,Ponnurangam, D.(2016).A survey of data visualization tools for analyzing large volume of data in big data platform.2016 International Conference on Communication and Electronics Systems (ICCES)
  29. Reshadi, M.H.,Goji-Ara, B.,Navabi, Z.(2000).HDML: compiled VHDL in XML.VHDL International Users Forum Fall Workshop
  30. RStudio. (2018). “RStudio 官方網站.” Retrieved from https://www.rstudio.com/
  31. Schroeck, M.,Shockley, R.,Smart, F.,Romero-Morales, D.,Tufano, P.(2012).Analytices: The real-world use of big data.
  32. Simon, H.A.(1977).The New Science of Management Decision.Englewood Cliffs, NJ.:Prentice-Hall.
  33. Spinellis, D.(2008).Using and abusing XML.IEEE Software,88-89.
  34. Tableau. (2018). “Tableau 官方網站.” Retrieved from https://www.tableau.com/
  35. Wood, L.,Apparao, V.,Byrne, S.,Champion, M.,Isaacs, S.,Jacobs, I.,Hors, A.L.,Nicol, G.,Robie, J.,Sutor, R.,Wilson, C.(1998).Wood, L., Apparao, V., Byrne, S., Champion, M., Isaacs, S., Jacobs, I., Hors, A.L., Nicol, G., Robie, J., Sutor, R. & Wilson, C. (1998). Document object model(DOM) Level 1 specification(REC-DOM-Level-1-19981001).W3C Recommendation 1 Oct 1998..
  36. Yahoo 奇摩理財. (2018). “外匯換算.” Retrieved from https://tw.money.yahoo.com/currency-converter
  37. Zikopoulos, P.,Eaton, C.,IBM(2011).Understanding big data: Analytics for enterprise class hadoop and streaming data.McGraw-Hill Osborne Media.
  38. 內政部戶政司、統計處. (2017). “生命統計.” Retrieved from https://www.moi.gov.tw/stat/
  39. 吳泰廷,楊文新,崔文(2012)。語意網、鏈結資料與開放資料之實務技術與應用。電腦與通訊,145,102-109。
  40. 政府資料開放平臺. (2018). “政府資料開放平臺官方網站.” Retrieved from https://data.gov.tw/
  41. 郭欣致(2019)。國立虎尾科技大學資訊管理系。
  42. 衛生福利部、統計處. (2017). “全國癌症死因統計.” Retrieved from https://data.gov.tw/dataset/8154
  43. 顏振修(2018)。義守大學資訊管理學系。