题名

運用職業重建資訊系統資料進行身心障礙服務個案就業之空間分析

并列篇名

Spatial Analysis of Employment of Clients with Disabilities: Data from the National Disability Vocational Rehabilitation Case Service Database

DOI

10.6172/BSE.202111_46(3).0002

作者

黃宜君(I-Chun Huang);郭幸福(Hsing-Fu Kuo)

关键词

全國身心障礙者職業重建個案服務資訊管理系統 ; 地理加權迴歸 ; 身心障礙者就業 ; 空間分析 ; 空間自相關 ; employment of people with disabilities ; geographically weighted regression ; National Disability Vocational Rehabilitation Case Service Database ; spatial analysis ; spatial autocorrelation

期刊名称

特殊教育研究學刊

卷期/出版年月

46卷3期(2021 / 11 / 30)

页次

29 - 56

内容语文

繁體中文

中文摘要

為促進身心障礙者就業,許多研究已致力於就業成效的評估與各項影響因素的探討,但是對於身心障礙者就業之空間位置與地理特性分析,迄今仍甚少涉及。近年來,空間分析方法迅速進步,有助了解地物分布所呈現的空間型態,並可結合空間迴歸模型,更確切掌握區域特性與各項因素間的關係。因此本研究旨在運用民國105年「全國身心障礙者職業重建個案服務資訊管理系統」內成功就業個案的資料,結合空間分析方法,探討臺灣接受職業重建服務之身心障礙個案的就業分布狀況,共計使用4,592筆身心障礙個案的就業數據。分析過程依序包括空間自相關分析、相關分析與迴歸分析,以ArcGIS 10.2軟體,進行空間資料分析,並利用SPSS Statistics 17.0,進行統計數據分析。結果發現,身心障礙個案就業分布經全域型空間自相關Moran's Index檢定顯示呈現空間群聚現象;區域型空間自相關Local Indicator of Spatial Association(LISA)分析得知,身心障礙個案就業群聚的現象以高屬性群聚(High-High)為主,未有顯著的高屬性離群(High-Low)、低屬性群聚(Low-High)與低屬性離群(Low-Low)區域發現。迴歸分析顯示,從業人口密度與服務業佔比是影響身心障礙個案就業之顯著因子,具有顯著正相關,且這兩個變數在不同地區產生不同的影響性;地理加權迴歸模型解釋力達86%。依據研究結果,本研究認為空間分析在職業重建領域的應用需要持續被重視,使用地理加權迴歸較傳統線性迴歸更能解釋臺灣接受職業重建服務個案的就業分布狀況,區域空間分析結果亦可提供更細緻的實務應用建議。

英文摘要

Purpose: To facilitate the employment of people with disabilities, many studies have evaluated employment outcomes and investigated the factors relevant to these outcomes. However, studies investigating the geospatial distribution of disability employment remain scarce. Rapid development in spatial analysis has helped researchers understand spatial distribution patterns. Spatial regression models can be used to investigate the relationships between various factors potentially associated with spatial characteristics. Therefore, this study applied spatial analysis to explore the spatial distribution patterns of the employment of clients with disabilities who were successfully employed after they received vocational rehabilitation services in Taiwan. Methods: Employment data were collected from the National Disability Vocational Rehabilitation Case Service Database. There were 4,592 clients who were engaged in paid employment after receiving the services in 2016. Data analysis included spatial autocorrelation analysis, correlation analysis, and regression analysis. In the spatial autocorrelation analysis, two indicators were used: Moran's Index measured global spatial autocorrelation based on both feature locations and feature values simultaneously to explore an overall spatial distribution pattern, while local indicators of spatial association (LISA) assessed the possibility of recognition of spatial clusters in each local data sets and the spatial patterns of the indictors were categorized into four zones (high-high, low-low, high-low and low-high). In the regression analysis, the traditional ordinary least-squares regression was applied first. It was then followed by the geographically weighted regression due to the identification of spatial autocorrelation in residuals. The ArcGIS 10.2 and SPSS Statistics 17.0 software packages were used to conduct the spatial and statistical analyses, respectively. Results/Findings: Global spatial autocorrelation analysis indicated spatial clusters in the employment of clients with disabilities. A significant high-high pattern was identified through local spatial autocorrelation analysis using local indicators of spatial association, but high-low, low-high, and low-low patterns were not identified. Moreover, the regression analysis indicated that employment density and service industry percentage were predictors of the geospatial distribution of the employment of clients with disabilities. These two variables were positively correlated and exhibited varied effects in different townships in Taiwan. The geographically weighted regression model accounted for 86% of the variance in the geospatial distribution of disability employment. Conclusions/Implications: The results give evidence of the importance of using spatial analysis in the vocational rehabilitation field. More endeavors are needed to increase the knowledge. The geographically weighted regression has the potential to provide a more accurate result than the traditional ordinary least-squares regression in determining the spatial distribution of employment of clients with disabilities who received vocational rehabilitation services in Taiwan. Further implications for practice based on the local spatial distribution patterns identified can also be provided herein.

主题分类 社會科學 > 教育學
参考文献
  1. 吳秀照, Shiou-Chao(2007)。臺中縣身心障礙者就業需求:排除社會障礙的就業政策探討。社會政策與社會工作學刊,11(2),149-198。
    連結:
  2. 林昭吟, Chao-Yin,孫健忠, Chien-Chung(2014)。我國公部門身心障礙者定額進用實施之多面向檢視。東吳社會工作學報,26,47-75。
    連結:
  3. 林真平, Chen-Ping(2019)。身心障礙者職業重建個案管理員與支持性就業服務員的專業知識重要性及具備程度。特殊教育研究學刊,44(1),31-58。
    連結:
  4. 紀玉臨, Yu-Lin,周孟嫻, Meng-Sian,謝雨生, Yeu-Sheng(2009)。台灣外籍新娘之空間分析。人口學刊,38,67-113。
    連結:
  5. 胡立諄, Li-Chun,賴進貴, Jinn-Guey(2006)。臺灣女性癌症的空間分析。臺灣地理資訊學刊,4,39-55。
    連結:
  6. 陳怡伃, Yi-Yi,李宜興,Yi-Shing,王文娟, Wen-Chuan,嚴嘉楓, Chia-Feng(2015)。花蓮縣身心障礙者就業需求與工作動機。身心障礙研究,13(4),255-267。
    連結:
  7. 劉君雅, Chun-Ya,鄧志松, Chih-Sung,唐代彪, De-Piao(2009)。臺灣低生育率之空間分析。人口學刊,39,119-155。
    連結:
  8. 劉麗雯, Li-Wen(2009)。地理資訊系統做為社區服務方案規劃與執行的輔助工具。社會政策與社會工作學刊,13(1),53-92。
    連結:
  9. 賴進貴, Jinn-Guey,葉高華, Ko-Hua,張智昌, Chy-Chang(2007)。投票行為之空間觀點與空間分析:以臺灣 2004 年總統選舉為例。選舉研究,14(1),33-60。
    連結:
  10. 薛立敏, Li-Min,李中文, Chung-Wen,曾喜鵬, Hsi-Peng(2003)。台灣區域人口遷移及其就業市場、住宅市場關係之實證研究。都市與計劃,30(1),37-61。
    連結:
  11. Albert, C.,Von Haaren, C.,Othengrafen, F.,Krätzig, S.,Saathoff, W.(2017).Scaling policy conflicts in ecosystem services governance: A framework for spatial analysis.Journal of Environmental Policy and Planning,19(5),574-592.
  12. Anselin, L.(2012).From SpaceStat to CyberGIS: Twenty years of spatial data analysis software.International Regional Science Review,35(2),131-157.
  13. Anselin, L.(1995).Local indicators of spatial Association-LISA.Geographical Analysis,27(2),93-115.
  14. Anselin, L.,Syabri, I.,Kho, Y.(2006).GeoDa: An introduction to spatial data analysis.Geographical Analysis,38(1),5-22.
  15. Audretsch, D. B.,Keilbach, M.(2005).Entrepreneurship capital and regional growth.The Annals of Regional Science,39(3),457-469.
  16. Belarbi, Y.,Zouache, A.(2008).,Economic Research Forum.
  17. Botticello, A. L.,Rohrbach, T.,Cobbold, N.(2014).Disability and the built environment: An investigation of community and neighborhood land uses and participation for physically impaired adults.Annals of Epidemiology,24(7),545-550.
  18. Brunsdon, C.,Fotheringham, A. S.,Charlton, M. E.(1996).Geographically weighted regression: A method for exploring spatial nonstationarity.Geographical Analysis,28(4),281-298.
  19. Burke, J.,Bezyak, J.,Fraser, R. T.,Pete, J.,Ditchman, N.,Chan, F.(2013).Employers' attitudes towards hiring and retaining people with disabilities: A review of the literature.Australian Journal of Rehabilitation Counseling,19(1),21-38.
  20. Chan, F.,Cheing, G.,Chan, J. Y. C.,Rosenthal, D. A.,Chronister, J.(2006).Predicting employment outcomes of rehabilitation clients with orthopedic disabilities: A CHAID analysis.Disability and rehabilitation,28(5),257-270.
  21. Chan, F.,Keegan, J.,Sung, C.,Drout, M.,Pai, C.-H.,Anderson, E.,McLain, N.(2009).The world health organization ICF model as a framework for assessing vocational rehabilitation outcomes.Journal of Rehabilitation Administration,33(2),91-112.
  22. Cordes, J.,Castro, M. C.(2020).Spatial analysis of COVID-19 clusters and contextual factors in New York City.Spatial and SpatioTemporal Epidemiology,34,100355.
  23. Cracolici, M. F.,Cuffaro, M.,Nijkamp, P.(2009).A spatial analysis on Italian unemployment differences.Statistical Methods and Applications,18(2),275-291.
  24. Dutta, A.,Gervey, R.,Chan, F.,Chou, C.-C.,Ditchman, N.(2008).Vocational rehabilitation services and employment outcomes for people with disabilities: A United States study.Journal of Occupational Rehabilitation,18(4),326-334.
  25. Elhorst, J. P.(2003).The mystery of regional unemployment differentials: Theoretical and empirical explanations.Journal of Economic Surveys,17(5),709-748.
  26. Fotheringham, S.,Charlton, M.,Brunsdon, C.(1998).Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis.Environment and Planning A: Economy and Space,30(11),1905-1927.
  27. Gilbride, D.,Stensrud, R.(1992).Demandside job development: a model for the 1990s.Journal of Rehabilitation,58(4),34-39.
  28. Goodchild, M. F.,Janelle, D. G.(2004).Spatially integrated social science.Oxford:Oxford University Press.
  29. Huang, I.-C.(2017).Employment outcomes following spinal cord injury in Taiwan.International Journal of Rehabilitation Research,40(1),84-90.
  30. Huang, I.-C.,Chen, R. K.(2015).Employing people with disabilities in the Taiwanese workplace: Employers' perceptions and considerations.Rehabilitation Counseling Bulletin,59(1),43-54.
  31. Huang, I.-C.,Holzbauer, J. J.,Lee, E.-J.,Chronister, J.,Chan, F.,O'neil, J.(2013).Vocational rehabilitation services and employment outcomes of adults with cerebral palsy in the United States.Developmental Medicine and Child Neurology,55(11),1000-1008.
  32. Huang, I.-C.,Wang, Y.-T.,Chan, F.(2013).Employment outcomes of adults with cerebral palsy in Taiwan.Disability and Rehabilitation,35(3),228-253.
  33. Kaye, H. S.,Jans, L. H.,Jones, E. C.(2011).Why don't employers hire and retain workers with disabilities?.Journal of Ocupational Rhabilitation,21(4),526-536.
  34. Lee, S. Y.,Florida, R.,Acs, Z. J.(2004).Creativity and entrepreneurship: A regional analysis of new firm formation.Regional Sudies,38(8),879-891.
  35. Liao, Y.,Wang, J.,Du, W.,Gao, B.,Liu, X.,Chen, G.,Song, X.,Zheng, X.(2017).Using spatial analysis to understand the spatial heterogeneity of disability employment in China.Transactions in GIS,21(4),647-660.
  36. López-Bazo, E.,del Barrio, T.,Artis, M.(2002).The regional distribution of Spanish unemployment: A spatial analysis.Papers in Regional Science,81(3),365-389.
  37. Luo, J.,Yu, D.,Xin, M.(2008).Modeling urban growth using GIS and remote sensing.Giscience and Remote Sensing,45(4),426-442.
  38. Molho, I.(1995).Spatial autocorrelation in British unemployment.Journal of Regional Science,35(4),641-658.
  39. Moran, P. A. P.(1950).Notes on continuous stochastic phenomena.Biometrika,37(1/2),17-23.
  40. Powell, S. K.,Tahan, H. A.(2014).Case management: A practical guide for education and practice.Philadelphia:Lippincott Williams & Wilkins.
  41. Rumrill, J.,Phillip, D.,Bellini, J. L.(2018).Research in rehabilitation counseling: A guide to design, methodology, and utilization.Illinois:Charles C Thomas Publisher Ltd..
  42. Song, Y.,Fu, L.(2018).Do charitable foundations spend money where people need it most? A spatial analysis of China.International Journal of Geo-Information,7(3),100.
  43. Strauser, D. R.(2014).Career development, employment, and disability in rehabilitation: From theory to practice.New York:Springer Publishing Company.
  44. Strauser, D.,Feuerstein, M.,Chan, F.,Atange, J.,da Silva Cardoso, E.,Chiu, C.-Y.(2010).Vocational services associated with competitive employment in 18-25 year old cancer survivors.Journal of Cancer Survivorship,4(2),179-186.
  45. Szymanski, E. M.(Ed.),Parker, R. M.(Ed.)(2010).Work and disability : Contexts, issues, and strategies for enhancing employment outcomes for people with disabilities.Austin, Tex.:Pro-Ed.
  46. Szymanski, E. M.(Ed.),Parker, R. M.(Ed.)(2010).Work and disability: Issues and strategies in career development and job placement.Austin, Texas:Pro-Ed.
  47. Wang, W.-C.,Chang, Y.-J.,Wang, H.-C.(2019).An application of the spatial autocorrelation method on the change of real estate prices in Taitung city.International Journal of Geo-Information,8(6),249.
  48. Wang, Y.-T.(2010).Job coach factors associated with community-based employment service programme outcome measures for people with disabilities - A Taiwan case study.Disability and Rehabilitation,32(19),1547-1557.
  49. Wang, Y.-T.,Lin, Y.-J.(2013).Employment outcome predictors for people with disabilities in Taiwan - A preliminary study using ICF conceptual frameworks.Journal of Rehabilitation,79(2),3-14.
  50. Wellman, B.(2018).Networks in the global village: Life in contemporary communities.New York:Routledge.
  51. Windle, M. J. S.,Rose, G. A.,Devillers, R.,Fortin, M.-J.(2010).Exploring spatial nonstationarity of fisheries survey data using geographically weighted regression (GWR): An example from the Northwest Atlantic.Ices Journal of Marine Science,67(1),145-154.
  52. 呂達雄, Ta-Hsiung(2008)。臺北=Taipei, Taiwan,世新大學財務金融學系=Shih Hsin University。
  53. 辛炳隆, Ping-Lung(2004).台灣產業結構調整與就業創造.臺北=Taipei:行政院經濟建設委員會=Council for Economic Planning and Development.
  54. 陳菁瑤, Jing-Yau,劉筠蓁, Yun-Chen(2011)。台灣服務業創業分佈影響因素之探討。創業管理研究,6(2),1-31。
  55. 勞動部勞動力發展署, Ministry of Labor(2014).身心障礙者職業重建個案管理服務工作手冊.臺北=Taipei:勞動部勞動力發展署=Laborforce Development Agency, Ministry of Labor.
  56. 黃春長, Chun-Chang,張玉山, Yue-Shan(2018).2030 年就業趨勢與展望研究(一).臺北:勞動部勞動及職業安全衛生研究所=Institue of Labor, Occupaitonal Safety and Health, Ministry of Labor.
  57. 楊貴英, Kuei-Ying(2007)。臺北=Taipei, Taiwan,國立臺北大學統計學系=National Taipei University。
  58. 溫在弘, Tzai-Hung(2015).空間分析:方法與應用.臺北=Taipei:雙葉書廊有限公司=Yeh Yeh Book Gallery.
  59. 廖素娟, Su-Chuan(2016)。臺北=Taipei, Taiwan,國立臺灣大學國家發展研究所=National Taiwan University。
  60. 臺東縣政府主計處(2017): 從人力資源調查看臺東縣勞動力人口運用:民國 105 年。[Taitung County Government Accounting and Statistics Department (2017). Assess manpower demand in Taitung through 2016 manpower survey]
  61. 劉筠蓁, Yun-Chen(2009)。臺北=Taipei, Taiwan,世新大學經濟學研究所=Shih Hsin University。
  62. 蘇百鑫, Pai-Hsin(2010)。臺北=Taipei, Taiwan,世新大學財務金融學系研究所=Shih Hsin University。