题名

高一學生地球科學問題解決能力與其先備知識及推理能力關係的初探研究

并列篇名

Exploring the Interrelationship between Tenth-Graders' Problem-Solving Abilities and Their Prior Knowledge and Reasoning Skills in Earth Science

DOI

10.6173/CJSE.2002.1002.02

作者

吳佳玲(Chia-Ling Wu);張俊彥(Chun-Yen Chang)

关键词

中等教育 ; 先備知識 ; 地球科學 ; 推理能力 ; 問題解決 ; Secondary Education ; Prior Knowledge ; Earth Science ; Reasoning Skills ; Problem Solving

期刊名称

科學教育學刊

卷期/出版年月

10卷2期(2002 / 06 / 01)

页次

135 - 156

内容语文

繁體中文

中文摘要

本研究之目的在編製地球科學「問題解決能力測驗」及「先備知識測驗」等量表,並藉此兩工具及現有之推理能力相關測驗,探究目前高中學生之問題解決能力與其先備知識及推理能力間的關係。研究者依據「創造性問題解決」的模式,設計以地球科學為學科背景脈絡的「問題解決能力測驗」,其中包含「發散性思考」與「收斂性思考」兩向度。此外,亦針對此「問題解決能力測驗」所需之先備知識而編製對應之「先備知識測驗」,其中並包含「學生對問題解決能力測驗」喜歡程度之1題單選題。本研究以台灣東部某國立高中一年級學生為研究對象,有效樣本共260人。研究設計採用相關研究法及半結構式的晤談。量的資料分析主要採皮爾遜積差相關及多元逐步迴歸分析法,質性資料則經由編碼與三角校正後進行分析,以進一步了解學生對「問題解決能力測驗」及「先備知識測驗」的看法與觀感。研究結果如下:一、研究工具之「問題解決能力測驗」總分與「發散思考」(r=814,p<001)及「收斂思考」向度(r=898,p<001)均有高度相關,且評分者信度達813~965。「先備知識測驗」之信度KR20介於60至63之間;二、學生問題解決能力與其先備知識(r=482, p<01)及推理能力(r=435, p<01)間均接近顯著之中度正相關及大的效果量(effect size),且「先備知識」、「推理能力」及「對問題解決的態度」對「問題解決能力」有顯著的預測力(解釋率達R2=343),而「先備知識」與「推理能力」對「發散思考」和「收斂思考」亦有顯著的預測力(解釋率達R^2=172~332),接近或具有大的效果量;三、推理能力與「發散思考」間有大的效果量的關係,而先備知識與「收斂思考」間亦有接近大的效果量的關係;四、晤談後發現學生認為「先備知識測驗」須仰賴「知識」、「態度」、和「經驗」的多寡,而「問題解決能力測驗」則須「知識」、「態度」、「思考」、與「經驗」的完備,其結果與量的分析頗為一致。據此,我們認為高中學生先備知識及推理能力的增強,應有助於提升他們在地球科學上的問題解決能力。尤其在「發散思考」上更應著重在「推理能力」的培養,而「收斂思考」應更強調「先備知識」的建立。

英文摘要

The purpose of this study was to develop the Problem Solving Ability Test (PSAT) and a matching Domain-Specific Knowledge Test (DSKT) that covers the basic knowledge central to the PSAT, with the aims to investigate the interrelationship between students' problem solving ability (PSA) and their domain-specific knowledge (DSK) as well as reasoning skills (RS) in the area of earth science. The PSAT was constructed based on the Creative Problem Solving (CPS) model, which emphasizes students' divergent-thinking ability (DTA) and convergent-thinking ability (CTA) subscales. The sample consisted of 260 tenth-grade students enrolled at a national senior high school in the eastern region of Taiwan. Quantitative analyses employed Pearson-product-moment correlation and stepwise multiple regression method. Qualitative data were acquired through semi-structured interviewing with coding and triangulation procedures to explore students' perceptions toward the PSAT and DSKT in greater depth. Results are as follows: (a) The overall scores of the PSAT are highly correlated with both the subscales of DTA (r=814, p<001) and CTA (r=898, p<001) with an inter-rater reliability ranged from 813 to 965 The reliability of the DSKT (KR20) ranged from 60 to 63; (b) A significantly positive correlation existed between students' PSA and their DSK (r=482, p<01) and RS (r=435, p<01) with medium to large effect sizes. In addition, students' DSK, RS and attitudes toward problem solving (ATPS) significantly predict their performance on the PSAT (R^2=343). Students' DSK and RS also predict their performance on the DTA and CTA subscales of the PSAT (R^2=172~332), approaching large effect sizes; (c) Students' RS are more significantly correlated with their DTA (large effect size) and students' DSK are more significantly correlated with their CTA (toward large effect size); (d) Semistructured interviews revealed that students' perceived knowledge, attitudes and experiences are essential in scoring high on the DSKT; while students thought that knowledge, attitude, thinking, and experiences were fundamental to better performance on the PSAT. The results of qualitative analyses are generally in line with the findings of quantitative analyses. It is, therefore, suggested that teachers should be able to improve students' problem solving performance through the enhancement of students' domain-specific knowledge and reasoning skills in earth science classrooms. Moreover, we should emphasize students' reasoning skills in developing divergent-thinking abilities, while stressing domain-specific knowledge in increasing students' convergent-thinking ability.

主题分类 社會科學 > 教育學
参考文献
  1. American Association for the Advancement of Science(1994).Benchmarks for science literacy.New York:Oxford University Press.
  2. Barba, R. H.(1990).Unpublished doctoral dissertation, The Pennsylvania State University.
  3. Borg, W. R.,Gall, M. D.(1989).Educational research.London:Longman Group Ltd.
  4. Cohen, J.(1988).Statistical power analysis for the behavioral sciences.Hillsdale, New Jersey:Lawrence Erlbaum Associate, Inc.
  5. Cohen, J.(1994).The earth is round (p<.05).American Psychologist,49,997-1003.
  6. Coleman, E. B.,Shore, B.(1991).Problem-solving processes of high and average performers in physics.Journal for the Education of the Gifted,14,366-379.
  7. Fisher, R.(1990).Teaching children think.Oxford:Basil Blackwell.
  8. Gage, B. A.(1986).Unpublished doctoral dissertation, The University of Maryland.
  9. Gagne, R. M.(1970).The conditions of learning.London:Holt-Saunders.
  10. Glass, G. V.,Hopkins, K. D.(1996).Statistical methods in education and psychology.Needham Heights, MA:Allyn & Bacon.
  11. Glass, G. V.,McGaw, B.,Smith, W.(1981).Meta-analysis in social research.Beverly Hills, CA:Sage.
  12. Hatcher, L.,Stepanski, E. J.(1994).A step-by-step approach to using the SAS system for univariate and multivariate statistics.Cary, NC:SAS Institute.
  13. Jonassen, D. H.(2000).Toward a design theory of problem solving.Educational Technology Research and Development,48,63-85.
  14. Niedelman, M. S.(1990).An investigation of transfer to mathematics of a problem-solving strategy learned in earth science.Dissertation Abstracts International,51(11),3622.
  15. Nix, T. W.,Barnette, J. J.(1998).The data analysis dilemma: Ban or abandon. A review of null hypothesis significance testing.Research in the Schools,5,3-14.
  16. O`Connell, S.(2000).Introduction to problem solving: Strategies for the elementary math classroom.Westport, CT:Heinemann.
  17. Ohanian, S.(2000).Math that measures up.American School Board Journal,184,25-27.
  18. Parnes, S. J.(1987).Visioneering-state of the art.Journal of Creative Behavior,21,283-299.
  19. Rowell, P. M.,Gustafson, B. J.,Guilbert, S. M.(1997).Problem-solving through technology: An interpretive dilemma.Alberta Journal of Educational Research,43,86-98.
  20. Seeds, M. A.(1990).Foundations of astronomy.Belmont:Wadsworth Publishing Company.
  21. Smith, M. U. (Eds.)(1991).Toward a unified theory of problem solving.Hillsdale, NJ:Lawrence Erlbaum Associates, Inc.
  22. Thorsland, M. N.,Novak, J. D.(1971).The identification and significance of intuitive and analytic problem solving approaches among college physics students.Science Education,58,245-265.
  23. Wagner, E. P.(2001).A study comparing the efficacy of a mole ratio flow chart to dimensional analysis for teaching reaction stoichiometry.School Science and Mathematics,101,10-22.
  24. Wesney, J.(1977).An analysis of influence of prior cognitive development in physics and in mathematical reasoning on concept attainment in the study of mechanics in introductory college physics.Dissertation Abstracts International,38,5379.
  25. 中央氣象局編(1972)。氣象測報手冊。台北市:中央氣象局。
  26. 毛松霖主編(2000)。高中地球科學課本。台中市:大同資訊。
  27. 王春展(1997)。專家與生手間問題解決能力的差異及其在教學上的啟示。教育研究資訊,5,80-92。
  28. 林清山(1995)。心理與教育統計學。台北市:東華書局。
  29. 高瀨文志郎、關口直浦、田鍋浩義、西惠三、平瀨志富、安井春雄原著(1989)。牛頓科學學習百科。台北市:牛頓出版社。
  30. 張玉成(1993)。思考技巧與教學。台北市:心理出版社。
  31. 張俊彥、翁玉華(2000)。我國高一學生的問題解決能力與其科學過程技能之相關研究。科學教育學刊,8,35-56。
  32. 教育部(2001)。國民中小學九年一貫課程暫行綱要:自然與生活科技。台北:教育部。
  33. 陳心維譯、孫維新審定(1999)。天文觀星圖鑑。台北市:貓頭鷹出版社。
  34. 程上修(2000)。台北市,國立台灣師範大學地球科學研究所。
  35. 楊坤原(1999)。問題解決在科學學習成就評量上的應用。科學教育月刊,216,3-16。
  36. 簡茂發、吳鐵雄、吳清基、劉奕權、邱美玉、王俊明、潘慧玲、何榮桂(1993)。高一性向測驗編製初步報告。測驗年刊,40,1-14。
被引用次数
  1. 陳彥廷、柳賢(2009)。中學生對代數式中文字符號之語意理解研究:不同管道的探討。科學教育學刊,17(1),1-25。
  2. 謝甫佩、洪振方(2008)。以結構方程模式驗證影響國二學生科學思考因素之理論模式。科學教育學刊,16(6),563-584。
  3. 鄭英耀、何曉琪、王佳琪(2014)。「科學創造性問題解決測驗」之發展。測驗學刊,61(3),337-360。