题名

樣式結構與回饋對幼兒發現重複樣式的影響

并列篇名

The Effects of Pattern Structure and Feedback on Repeating Pattern Finding in Kindergarten Students

DOI

10.6173/CJSE.2008.1603.04

作者

吳昭容(Choa-Jung Wu);嚴雅筑(Ya-Chu Yen)

关键词

重複樣式 ; 複雜度 ; 單位化 ; 群組 ; 回饋 ; Feedback ; Complexity ; Repeating pattern ; Unitization ; Grouping

期刊名称

科學教育學刊

卷期/出版年月

16卷3期(2008 / 06 / 01)

页次

303 - 324

内容语文

繁體中文

中文摘要

重複樣式意指一組元素的循環,例如紅、藍、紅、藍的串珠、四季、舞蹈、音樂等,數學教育學者認為樣式的經驗是學習代數的基礎。本研究採用橫排的色點要求幼兒預測下一色,隨即翻出答案作為回饋,並在材料上操弄單位長度和樣式複雜度兩個結構因素,以探究幼兒覺察與確認重複規律的歷程。參與者取樣自台北市三個幼稚園,4歲半和5歲半的幼兒各20名。結果兩個年齡層幼兒單從題面掌握樣式的正確率相當,4和6兩種長度對正確率的影響也不顯著,但複雜度明顯地影響表現。單位內無重複元素如abcd,前後元素的關係單純,難度最低;單位內有相鄰的重複元素時,知覺的相似性法則會使aabc群組成類似abc的不重複樣式,減低知覺上的複雜度,但在答題過程又須分解aa為獨立元素,以正確預測下一個元素,故難度居中;單位內有不相鄰的重複元素會顯著較前二樣式困難,由於abac的重複元素其後續元素具不確定性,幼兒必須擴大比對的範圍,方能提高正確率。此外,兩個年齡層運用回饋的能力不同,回饋提升4歲半幼兒表現的幅度不及5歲半幼兒,三種複雜度的樣式發現均有進步,但以第三種複雜樣式-重複不相鄰提升的幅度最低,顯示單純的回饋無法大幅提升發現此類重複樣式的表現,發展單位化能力才是關鍵。

英文摘要

This research is aimed to analyze the influence of both structural factors and age on the kindergarten students' finding of repeating patterns and the variance of such influences in terms of immediate feedback. The repeating pattern is a series of repeat occurrences of specific parameters such as ”Red-Blue-Red-Blue” beads, four seasons, high and low tide, patterns on clothes, dancing and music. The repeat patterns finding is the perception and confirmation of repeat orders. The structural factors of both unit-length and complexity have been maneuvered in the experiment, the former included 4-and-6-unit and the later have been classified as ”repeat and adjacent”, ”repeat and NOT adjacent” and ”NO repetition” according to complexity. The objectives of this research have been grouped as 4.5-and-5.5 year-olds and the total number of students was 20 per group and 40 overall. The result of accuracy analysis indicated that the performance of the two groups was almost identical and the influence of unit-length on accuracy rate was not clear, whereas the complexity of attern had the greatest influence on the performance of these children. The accuracy rate of ”repeat and NOT adjacent” was much lower than the other two types. Since the sequence of repeating element of ”abac” is unstable, the uniting ability is most needed for child to discover such repeat patterns. With the type of ”repeat and adjacent” represented as the law of similarity, while the repetition of ”aa” is simpler to identified within ”aabc”, they must be treated as individual element in the process of answering. The child’s ability to perceive was continuously examined through the two processes. The ”NO repetition” type is consequently the simplest type with pure elements. The accuracy rate over the performance of perception in the group of 4.5- year-old-child will be upgraded with the intervention of feedback, but it's not as good as the upgrading in 5.5s. The influence of feedback on different levels of complexity have indicated the following: the ”NO repetition” type have been upgraded to full accuracy, the ”repeat and NOT adjacent” type have shown greatest upgrading in accuracy and the accuracy rate was almost identical with ”NO repetition” type after modification, and while the average accuracy rate of ”repeat and NOT adjacent” type haas also been also upgraded after feedback. The range of upgrading was comparatively small within three types. Although the rhythm method may be regarded as an alternative strategy for children to discover patterns through observation, it can not be seen as a measurable unit of perception. Finally, the researchers analyzed the participant's history for answering empirical questions and provided frequent suggestions for research related to curriculum studies for kindergarten students.

主题分类 社會科學 > 教育學
参考文献
  1. Copley, J. V.、何雪芳、陳彥文譯(2003)。幼兒數學教材教法。台北:華騰。
  2. Cowan, N.(2000).The magical number 4 in short-term memory: A reconsideration of mental storage capacity.Behavioral and Brain Science,24,87-185.
  3. Druyan, S.(2001).A comparison of four types of cognitive conflict and their effect on cognitive development.International Journal of Behavioral Development,25(3),226-236.
  4. English, L. D.,Warren, E. A.(1998).Introducing the variable through pattern exploration.The Mathematics Teacher,91(2),166-171.
  5. Garrick, R.,Threlfall, J.,Orton, A.(Ed.)(1999).Pattern in the teaching and learning of mathematics.London:Cassell.
  6. Geer, C. P.(1992).Exploring patterns, relations, and functions.The Arithmetic Teacher,39(9),19-21.
  7. Hargreaves, M.,Threlfall, J.,Frobisher, L,Shorrocks-Taylor, D.,A. Orton (Ed.)(1999).Pattern in the teaching and learning of mathematics.London:Cassell.
  8. Holzman, T. G.,Pellegrino, J. W.,Glaser, R.(1983).Cognitive variables in series completion.Journal of Educational Psychology,75(4),603-618.
  9. Kieran, C.,D. A. Grouws (Ed.)(1992).Handbook of research on mathematics teaching and learning: A project of the NCTM.New York:Macmillan.
  10. LeFevre, J. A.,Bisanz, J.(1986).A cognitive analysis of number-series problems: Sources of individual differences in performance.Memory & Cognition,14(4),287-298.
  11. National Council of Teacher of Mathematics(1989).Curriculum and evaluation standards for school mathematics.Reston, VA:NCTM.
  12. National Council of Teacher of Mathematics(2000).The principles and standards for school mathematics.Reston, VA:NCTM.
  13. Olivers, C. N. L.,Chater, N.,Watson, D. G.(2004).Holography does not account for goodness: A critique of van der Helm and Leeuwenberg.Psychological Review,111(1),242-260.
  14. Orton, A.(Ed.),Orton, J.(1999).Pattern in the teaching and learning of mathematics.London:Cassell.
  15. Owen, A.,J. Anghileri (Ed.)(1995).Children`s mathematical thinking in the primary years: Perspectives on children`s learning.London:Cassell.
  16. Piaget, J.(1952).The origins of intelligence in children.New York:International University Press.
  17. Simon, H. A.(1972).Complexity and the representation of patterned sequences of symbols.Psychological Review,79(5),369-382.
  18. Steen, L. A.(1988).The science of patterns.Science,240(4852),611-616.
  19. Taylor-Cox, J.(2003).Algebra in the early years?.Young Children,58(1),14-21.
  20. Threlfall, J.,A. Orton (Ed.)(1999).Pattern in the teaching and learning of mathematics.London:Cassell.
  21. Tudge, J. R. H.,Winterhoff, P. A.,Hogan, D. M.(1996).The cognitive consequences of collaborative problem solving with and without feedback.Child Development
  22. van der Helm, P. A.,Leeuwenberg, E. L. J.(2004).Holographic goodness is not that bad: Reply to Olivers, Chater, and Watson.Psychological Review,111(1),261-273.
  23. van der Helm, P. A.,Leeuwenberg, E. L. J.(1996).Goodness of visual regularities: A nontransformational approach.Psychological Review,103(3),429-456.
  24. van der Helm, P. A.,van Lier, R. J.,Leeuwenberg, E. L. J.(1992).Serial pattern complexity: Irregularity and hierarchy.Perception,21,517-544.
  25. van Leeuwen, C.(1991).Testing organization preferences in serial pattern learning.The Journal of General Psychology,118(2),139-145.
  26. Vitz, P. C.,Todd, T. C.(1969).A coded element model of the perceptual processing of sequential stimuli.Psychological Review,76(5),433-449.
  27. Vitz, P. C.,Todds, T. C.(1967).A model of learning for simple repeating binary pattern.Journal of Experimental Psychology,75(1),108-117.
  28. Vygotsky, L. S.(1978).Mind in society.Cambridge, MA:Harvard University Press.
  29. Wagemans, J.(1999).Toward a better approach to goodness: Comments on van der Helm and Leeuwenberg.Psychological Review,106(3),610-621.
  30. 李國偉、L. Stewart著、葉李華譯(1996)。大自然的數學遊戲。台北:天下。
  31. 周淑惠(1999)。幼兒數學新論-教材教法。台北:心理。
  32. 徐千惠(2006)。碩士論文(碩士論文)。國立台北師範學院教育心理與諮商學系。
  33. 國民中小學九年一貫課程暫行綱要
  34. 教育部(1987)。幼稚園課程標準。台北:教育部。
  35. 曹亮吉(2003)。阿草的數學聖杯。台北:天下遠見。
被引用次数
  1. 陳佩秀(2018)。資訊科技與提問教學策略對數學學習困難學童在數量關係單元解題表現之成效。臺北市立大學學報:教育類,49(2),53-78。
  2. 陳埩淑(2017)。幼童重複樣式教學之探索性研究。臺灣數學教育期刊,4(1),63-92。
  3. 徐千惠、吳昭容(2010)。兒童如何在重複中找到規律?重複樣式的程序性與概念性知識。教育科學研究期刊,55(1),1-25。