题名

低年級學童對於「加法交換律」與「等號」的認識

并列篇名

Children's Understanding of the Additive Commutative Law and the Equal Sign

DOI

10.6173/CJSE.2011.1903.02

作者

姚如芬(Ru-Fen Yao)

关键词

加法交換律 ; 低年級學童 ; 個案研究 ; 等號 ; Additive Commutative Law ; Children ; Case Study ; Equal Sign

期刊名称

科學教育學刊

卷期/出版年月

19卷3期(2011 / 06 / 01)

页次

211 - 235

内容语文

繁體中文

中文摘要

本個案研究主要目的在探討17位國小低年級學童對「加法交換律」的認識、並討論這群個案學童對於「等號」的相關想法。經由補救教學期間的觀察、晤談與相關文件的綜合分析,研究發現:多數學童在補救教學前知道「50+25」與「25+50」結果相同,但係透過計算而非「加法交換律」的應用;經由補救教學引導,學童關於「加法交換律」的認識可以逐步進階,依序為計算階段、認知階段、等式表徵前階段、等式表徵階段,而這些不同的認識階段與這群學童對「等號」的認識息息相關;研究者綜合此些發現,於文中提出了關於學童「加法交換律」的發展階層及其與「等號」認識之關聯圖;同時針對「加法交換律」相關的教學與探究,提出若干省思與建議。

英文摘要

The main purpose of this case study was to investigate 17 children's understanding of the commutative law of addition and the equal sign. Various data was obtained through observation, interview and the collection of relevant documents. From analyses of the data it was noticed that prior to any instruction most students could recognize 50+25=25+50 through counting but not through the application of the additive commutative law. After instruction, students' understanding of the additive commutative law improved, and this understanding was related to their understanding about the equal sign in equation. According to these findings, the researcher developed a model to show the progress of students' understanding of the additive commutative law in addition to their understanding of equal sign. Reflections and suggestions are also presented in this article.

主题分类 社會科學 > 教育學
参考文献
  1. Oksuz, C. (2007). Children's understanding of equality and the equal symbol. Retrieved December 1, 2007, from http://www.cimt.plymouth.ac.uk/journal/oksuz.pdf
  2. Baroody, A. J.(1982).Are discovering commutativity and more economical addition strategies related?.Problem Solving,12,1-2.
  3. Baroody, A. J.,Gannon, K. E.(1984).The development of the commutativity principle and economical addition strategies.Cognition and Instruction,1(3),321-339.
  4. Baroody, A. J.,Ginsburg, H. P.,Waxman, B.(1983).Children's use of mathematical structure.Journal for Research in Mathematics Education,14(3),156-168.
  5. Behr, M.,Erlwanger, S.,Nichols, E.(1980).How children view the equals sign.Mathematics Teaching,92,13-15.
  6. Bermejo, V.,Rodriguez, P.(1993).Children's understanding of the commutative law of addition.Learning and Instruction,3(1),55-72.
  7. Booth, L. R.(1984).Algebra: Children's strategies and errors: A report of the strategies and errors in secondary mathematics project.Windsor, UK:NFER-Nelson.
  8. Brito-Lima, A. P.,da Rocha Falcão, J. T.(1997).Early development of algebraic representation among 6-13 year old children: The importance of didactic contract.Proceedings of the 21st conference of the international group for the psychology of mathematics education,Lahti, Finland:
  9. Brizuela, B. M.,Schliemann, A. D.(2003).Fourth graders solving equations.Proceedings of the 27th international conference psychology of mathematics education,Honolulu, HI:
  10. Carpenter, T. P.,Franke, M. L.,Levi, L.(2003).Thinking mathematically: Integrating arithmetic and algebra in elementary school.Portsmouth, NH:Heinemann.
  11. Carraher, D.,Schliemann, A. D.,Brizuela, B. M.(2001).Can young students operate on unknowns.Proceedings of the 25th conference of the international group for the psychology of mathematics education,Utrecht, The Netherlands:
  12. Collins, R.,Cooper, P. J.(1997).The power of story: Teaching through storytelling.Scottsdale, AZ:Gorsuch Scarisbrick.
  13. Coxford, A. F.(ed.),Shulte, A. P.(ed.)(1988).The ideals of Algebra, K-12.Reston, VA:National Council of Teachers of Mathematics.
  14. Davydov, V. V.(ed.)(1991).Soviet studies in mathematics education, Vol. 6: Psychological abilities of primary school children in learning mathematics.Reston, VA:National Council of Teachers of Mathematics.
  15. Davydov, V.(ed.)(1991).Soviet studies in mathematics education. Psychological abilities of primary school children in learning mathematics.Reston, VA:National Council of Teachers of Mathematics.
  16. Erlwanger, S.,Berlanger, M.(1983).Interpretations of the equal sign among elementary school children.North American Chapter of the International Group for Psychology of Mathematics Education,Montreal, Canada:
  17. Falkner, K. P.,Levi, L.,Carpenter, T. P.(1999).Children's understanding of equality: A foundation for algebra.Teaching Children Mathematics,6(4),232-236.
  18. Fennema, E.(ed.),Romberg, T. A.(ed.)(2009).Mathematics classrooms that promote understanding.Mahwah, NJ:Lawrence Erlbaum Associates.
  19. Friedlander, A.,Taizi, N.(1987).Early algebra games.Mathematics in School,16(1),2-6.
  20. Ginsburg, H. P.(1982).Children's arithmetic: How they learn it and how you teach it.Austin, TX:PRO-ED.
  21. Greens, C. E.(ed.),Rubenstein, R.(ed.)(2008).Algebra and algebraic thinking in school mathematics: 70th yearbook of National Council of Teachers of Mathematics.Reston, VA:National Council of Teachers of Mathematics.
  22. Grouws, D. A.(ed.)(1992).Handbook of research on mathematics teaching and learning.New York:MacMillan.
  23. Kieran, C.(2004).Algebraic thinking in the early grades: What is it?.The Mathematics Educator,8(1),139-151.
  24. Kieran, C.(1981).Concepts associated with the equality symbol.Educational Studies in Mathematics,12(3),317-326.
  25. Knuth, E. J.,Alibali, M. W.,Hattikudur, S.,McNeil, N. M.,Stephens, A. C.(2008).The importance of equal sign understanding in the middle grades.Mathematics Teaching in the Middle School,13(9),514-519.
  26. Knuth, E. J.,Stephens, A. C.,McNeil, N. M.,Alibali, M. W.(2006).Does understanding the equal sign matter? Evidence from solving equations.Journal for Research in Mathematics Education,37(4),297-312.
  27. Moses, B.(ed.)(1999).Algebraic thinking, grades K-12: Readings from NCTM's school-based journals and other publications.Reston, VA:National Council of Teachers of Mathematics.
  28. National Council of Teachers of Mathematics(2000).Principles and standards for school mathematics.Reston, VA:National Council of Teachers of Mathematics.
  29. Patton, M. Q.(1990).Qualitative evaluation and research methods.Thousand Oaks, CA:Sage.
  30. Sáenz-Ludlow, A.,Walgamuth, C.(1998).Third Graders' interpretations of equality and the equal symbol.Educational Studies in Mathematics,35(2),153-187.
  31. Schliemann, A. D.,Carraher, D. W.,Brizuela, B. M.(2007).Bringing out the algebraic character of arithmetic: From children's ideas to classroom practice.Mahwah, NJ:Lawrence Erlbaum Associates.
  32. Wagner, S.(ed.),Kieran, C.(ed.)(1989).Research issues in the learning and teaching of algebra.Reston, VA:National Council of Teachers of Mathematics.
  33. Warren, E.(2004).Generalising arithmetic: Supporting the process in the early years.Proceedings of the 28th conference of the international group for the psychology of mathematics education,Bergen, Norway:
  34. 李美蓮、劉祥通(2003)。開啟國中代數教學的新視窗。科學教育月刊,265,2-15。
  35. 林光賢、郭汾派、林福來(1989)。,臺北市:行政院國家科學委員會。
  36. 林清山、張景媛(1994)。國中生代數應用題教學策略效果之評估。教育心理學報,27,35-62。
  37. 姚如芬(2007)。「新臺灣之子」數學學習初探。臺灣數學教師(電子)期刊,9,36-56。
  38. 洪有情(2006)。,臺北市:行政院國家科學委員會。
  39. 教育部(2003)。92年國民中小學九年一貫課程綱要:數學學習領域。臺北市:教育部。
  40. 莊松潔(2004)。碩士論文(碩士論文)。高雄市,國立中山大學教育研究所。
  41. 郭生玉(1990)。心理與教育研究法。新北市:精華書局。
  42. 陳嘉皇(2006)。國小五年級學童代數推理策略應用之研究:以「圖卡覆蓋」解題情境歸納算式關係為例。屏東教育大學學報,25,381-412。
  43. 陳嘉皇(2007)。,臺北市:行政院國家科學委員會。
  44. 陳維民(1998)。碩士論文(碩士論文)。高雄市,國立高雄師範大學數學系。
  45. 黃瑞琴(1994)。質的教育研究方法。臺北市:心理。
  46. 黃寶彰(2003)。碩士論文(碩士論文)。屏東縣,國立屏東師範學院數理教育研究所。
  47. 熊召弟(1996)。科學童話在自然科學教學的意義。國民教育,36(3),26-31。
  48. 戴文賓、邱守榕(2000)。國一學生由算術領域轉入代數領域呈現的學習現象與特徵。科學教育,10,148-175。
  49. 謝和秀、謝哲仁(2002)。國一學生文字符號概念及代數文字題之解題研究。九十一學年度師範院校教育學術論文發表會,嘉義市:
被引用次数
  1. 姚如芬、李健秋(2016)。文化情境融入「整數運算規則」之補救教學研究。科學教育學刊,24(S),487-509。
  2. (2023)。國小二年級學童數學加減法文字題錯誤分析。清華教育學報,40(2),91-130。