题名

結合鷹架教學與非例行性數學問題發展學生數學解題能力之研究

并列篇名

The Study of Developing Problem Solving Ability through Scaffolding Instruction and Non-Routine Problems

DOI

10.6173/CJSE.2012.2006.04

作者

簡清華(Ching-Hua Chien);蔡佳霏(Chia-Fei Tsai)

关键词

非例行性問題 ; 數學解題能力 ; 鷹架 ; Non-routine Mathematical Problems ; Mathematical Problem-Solving Ability ; Scaffolding

期刊名称

科學教育學刊

卷期/出版年月

20卷6期(2012 / 12 / 01)

页次

563 - 586

内容语文

繁體中文

中文摘要

本研究的目的在於探討教師及同儕鷹架,影響學生解非例行性數學問題時的解題表現及解題思維。研究個案是從屏東縣某國小二年級學生中,依據在校數學成績,篩選三位學生,其中兩位為數學高程度,一位是中程度;由三人組成一共同學習小組,安排每週一次約一小時的非例行數學問題解題學習,研究時間為期十週。研究期間,研究者透過教室觀察、訪談記錄、文件蒐集……等多元方式來蒐集資料。研究所得結果如下:一、鷹架的運作提升學生對於題意的理解;二、透過學生的近側發展區,鷹架之運作有助於提升學生數學建模及解題能力到達他們自力難以到達的程度;三、鷹架運作能提升學生問題表徵的能力;四、在多元解題的數學同儕鷹架運作下,學生的解題歷程更加精緻化;五、透過不同層次鷹架的搭建,有助於多元化學生的解題策略及提升學生的解題表現。

英文摘要

The focus of this research is on the impact of teacher (expert) scaffolding and peer scaffolding on students' problem solving performances and thinking processes on non-routine mathematics problems. Three second graders students at the local elementary school in Pingtung County in southern Taiwan were selected based on their mathematics achievement. Two of them are high-achievement students when the third one is a middle-achievement student. Subjects were grouped together to receive one hour non-routine mathematics problem solving training once a week for ten weeks. The research used qualitative research method in data gathering and analysis. The study obtained following findings: 1. Scaffolding enhances students' understanding of meaning of these non-routine questions. 2. Scaffolding helps students promote their problem solving abilities through their proximal development zone. 3. Scaffolding stimulates students' problem-solving thinking, and helps them to build suitable mathematics model to solve mathematics problems. 4. Peer scaffolding enhances diverse mathematics problem solving strategies and students' problem solving performances.

主题分类 社會科學 > 教育學
参考文献
  1. Bentley, D.,Watts, M.(1992).Communicating in school science: Groups, tasks and problem solving 5-16.London:The Falmer Press.
  2. Bruner, J. S.(1966).Toward a theory of instruction.Cambridge, MA:Belknap Press of Harvard University.
  3. Clarkson, S. P.(1970).A study of the relationships among translation skills and problem-solving abilities.New York:Academic Press.
  4. Erlwanger, S. H.(1973).Benny's conception of rules and answers in IPI mathematics.Journal of Children's Mathematical Behavior,1(2),7-26.
  5. Forman, E. A.,Cazden, C. B.(1985).Exploring Vygotskian perspectives in education: The cognitive value of peer interaction.Culture, communication, and cognition,New York:
  6. Gallas, K.(1995).Talking their way into science: Hearing children's questions and theories, responding with curricula.New York:Teachers College Press.
  7. Kaiser, G.,Willander, T.(2005).Development of mathematical literacy: Results of an empirical study.Teaching Mathematics and Its Applications,,24(2-3),48-60.
  8. Kilpatrick, J.(ed.),Wirszup, I.(ed.)(1969).Soviet studies in the psychology of learning and teaching mathematics.Chicago, IL:University of Chicago.
  9. Krutetski, V. A.(1976).The psychology of mathematical abilities in school children.Chicago, IL:University of Chicago.
  10. Langer, J. A.(1983).Instructional scaffolding: Reading and writing as natural language activities.Language Arts,60(2),168-175.
  11. Lemke, J. L.(1990).Talking science: Language, learning, and values.New York:Alex Press.
  12. Marshall, S. P.,Pribe, C. A.,Smith, J. D.(1987).Schema knowledge structures for representing and understanding arithmetic story problems.Arlington, VA:Office of Naval Research.
  13. Phillips, P. C. B.(1991).Optimal inference in cointegrated systems.Econometrica,59(2),283-306.
  14. Piaget, J.(1971).Biology and knowledge.Chicago, IL:University of Chicago Press.
  15. Richard, R. S.、陳澤民譯(2007)。數學學習心理學。臺北市:九章。
  16. Simon, B.(ed.),Simon, J.(ed.)(1963).Educational psychology in the U.S.S.R..Stanford, CA:Stanford University Press.
  17. Skemp, R. R.(1987).The psychology of learning mathematics.Hillsdale, NJ:Lawrence Erlbaum Associates.
  18. Spiro, R. J.(ed.),Bruce, B. C.(ed.),Brewer, W. F.(ed.)(1980).Theoretical issues in reading comprehension.Hillsdale, NJ:Lawrence Erlbaum Associates.
  19. Van Hiele, P. M.(1985).Structure and insight: A theory of mathematics education.Orlando, FL:Academic Press.
  20. Vygotsky, L. S.(1978).Mind in society: The development of higher psychological processes.Cambridge, MA:Harvard University Press.
  21. Wheatley, G. H.(1991).Constructivist perspectives on science and mathematics learning.Science Education,75(1),9-21.
  22. Whitney, H.(1985).Taking responsibility in school mathematics education.Proceedings of the ninth international conference for the psychology of mathematics education,Utrecht, NL:
  23. Wood, D.,Bruner, J. S.,Ross, G.(1976).The role of tutoring in problem solving.Journal of Child Psychology and Psychiatry,17(2),89-100.
  24. 王怡萍(2010)。碩士論文(碩士論文)。臺南市,國立臺南大學數學教育學系。
  25. 張俊雄(2010)。碩士論文(碩士論文)。臺南市,國立臺南大學數學教育學系。
  26. 教育部(2003)。國民中小學九年一貫課程綱要數學學習領域。臺北市:作者。
  27. 許錦祥(2010)。碩士論文(碩士論文)。臺南市,國立臺南大學數學教育學系。
  28. 陳世杰(2005)。碩士論文(碩士論文)。高雄市,國立高雄師範大學教育學系。
  29. 陳育琳(2007)。博士論文(博士論文)。臺中市,國立臺中教育大學教育學系。
  30. 黃招華(2010)。碩士論文(碩士論文)。臺南市,國立臺南大學數學教育學系。
  31. 黃敏晃(2000)。規律的尋求。臺北市:心理。
  32. 黃敏晃(1998)。數學年夜飯。臺北市:心理。
  33. 葉其孝(1997)。數學建模教學活動與大學數學教育改革。數學的實踐與認識,1,92-96。
  34. 蔡久瑜(2003)。碩士論文(碩士論文)。彰化市,國立彰化師範大學特殊教育學系。
  35. 羅素貞(1996)。問題表徵與問題解決。屏東師院學報,9,149-176。
  36. 鐘劍、簡國明、桂紹輝(2000)。淺談數學與數學建模競賽。贛南師範學院學報,21(6),38-40。