题名

Extending the Conception of Horizon Content Knowledge: Fundamental Mathematical Knowledge and Its Sample Assessment Item

并列篇名

擴展教師眼界數學知識-基礎數學知識與一個評量範例

DOI

10.6173/CJSE.2015.2301.01

作者

林勇吉(Yung-Chi Lin);金鈐(Chien Chin)

关键词

評量 ; 基礎數學知識 ; 眼界數學知識 ; 教數學所需的知識 ; 教師知識 ; Assessment, Fundamental Mathematical Knowledge (FMK) ; Horizon Content Knowledge (HCK) ; Mathematics Knowledge for Teaching (MKT) ; Teacher Knowledge

期刊名称

科學教育學刊

卷期/出版年月

23卷1期(2015 / 03 / 01)

页次

1 - 22

内容语文

英文

中文摘要

「眼界數學知識」(horizon content knowledge)意謂教師對目前所教授的數學內容,有更廣闊與深層的瞭解。本研究旨在提出「基礎數學知識」(fundamental mathematical knowledge),藉以精緻「眼界數學知識」之架構;並呈現一個評量教師基礎數學知識之範例問題。基礎數學知識定義為:對所教授之數學內容或數學問題,具有深層、透徹且融會貫通的理解。當教師具有基礎數學知識時,能夠察覺(awareness)教學主題中,核心且最基本的數學知識(洞察問題背後的一致性)。掌握這個核心且基本的數學知識,可幫助學生融會貫通整個數學問題,有助於學生解決更高難度的相關數學問題,並幫助未來更高階數學的學習。基礎數學知識是從基礎的角度來看待高階數學(elementary on advanced)。此外,發展基礎數學知識的評量,不但可幫助教師提升基礎數學知識,並能透過實徵的研究資料,健全基礎數學知識的定義。

英文摘要

The purpose of this article is to extend the concept of Horizon Content Knowledge and provide a sample assessment item. Fundamental mathematical knowledge (FMK) is defined as an awareness of the core or in-depth mathematics behind solving a problem. Teachers with fundamental mathematical knowledge can provide students with a more broad and comprehensive approach to solving mathematical problems that extends beyond the rote procedures used to solve a particular problem. We propose that this type of knowledge should be included in the model of Horizon Content Knowledge. Developing items that assess teachers' Horizon Content Knowledge is worthwhile because this process provides a practical way to illuminate and refine the structure and content of Horizon Content Knowledge.

主题分类 社會科學 > 教育學
参考文献
  1. Lin, Y. C.,Chin, C.(2014).Developing an instrument for capturing high school mathematics teachers' mathematics knowledge for teaching: An exploratory study.Journal of Research in Education Science,59(3),133-160.
    連結:
  2. Chin, C. (2011). An investigation of high school teachers' MKT: Sharing the results from Taiwan (PowerPoint slides). Retrieved February 14, 2013, from http://gimse.web2.nhcue.edu.tw/ezfiles/28/1028/img/803/992-0503.ppt
  3. Ball, D. L.(1989).Teaching mathematics for understanding: What do teachers need to know about the subject matter?.East Lansing, MI:National Center for Research on Teacher Education.
  4. Ball, D. L.(1990).The mathematical understandings that prospective teachers bring to teacher education.The Elementary School Journal,90(4),449-466.
  5. Ball, D. L.,Bass, H.(2009).With an eye on the mathematical horizon: Knowing mathematics for teaching to learners' mathematical futures.43rd Jahrestagung der Gesellschaft fur Didaktik der Mathematik,Oldenburg, Germany:
  6. Ball, D. L.,Thames, M. H.,Bass, H.,Sleep, L.,Lewis, J.,Phelps, G.(2009).A practice-based theory of mathematical knowledge for teaching.Proceedings of the 33rd conference of the international group for the psychology of mathematics education,Thessaloniki, Greece:
  7. Ball, D. L.,Thames, M. H.,Phelps, G.(2008).Content knowledge for teaching what makes it special?.Journal of Teacher Education,59(5),389-407.
  8. Beckmann, S.(2002).Mathematics for elementary teachers: Making sense by "explaining why".Second International Conference on the Teaching of Mathematics at the Undergraduate Level,Rethimno, Greece:
  9. Boaler, J.(Ed.)(2000).Multiple perspectives on the teaching and learning of mathematics.Westpost, CT:Ablex.
  10. Chick, H.,Baker, M.,Pham, T.,Cheng, H.(2006).Aspects of teachers' pedagogical content knowledge for decimals.Proceedings of the 30th conference of the international group for the psychology of mathematics education,Prague, Czech Republic:
  11. Figueiras, L.,Ribeiro, M.,Carrillo, J.,Fernández, S.,Deulofeu, J.(2011).Teachers' advanced mathematical knowledge for solving mathematics teaching challenges: A response to Zazkis and Mamolo.For the Learning of Mathematics,31(3),26-28.
  12. Foster, C.(2011).Peripheral mathematical knowledge.For the Learning of Mathematics,31(3),24-26.
  13. Herbst, P.,Kosko, K. W.(2012).Mathematical knowledge for teaching high school geometry.34th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education,Kalamazoo, MI:
  14. Hill, H.,Ball, D. L.,Schilling, S.(2008).Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers' topic-specific knowledge of students.Journal for Research in Mathematics Education,39(4),372-400.
  15. Hossain, S.,Mendick, H.,Adler, J.(2013).Troubling "understanding mathematics in-depth": Its role in the identity work of student-teachers in England.Educational Studies in Mathematics,84(1),35-48.
  16. Howe, R.(1999).Book review: Knowing and teaching elementary mathematics.Notices of the American Mathematical Society,46(8),881-887.
  17. Jakobsen, A.,Thames, M. H.,Ribeiro, C. M.(2013).Delineating issues related to horizon content knowledge for mathematics teaching.Eighth Congress of European Research in Mathematics Education (CERME 8),Antalya, Turkey:
  18. Jakobsen, A.,Thames, M. H.,Ribeiro, C. M.,Delaney, S.(2012).Using practice to define and distinguish horizon content knowledge.12th International Congress on Mathematics Education,Seoul, South Korea:
  19. Kersting, N.(2008).Using video clips of mathematics classroom instruction as item prompts to measure teachers' knowledge of teaching mathematics.Educational and Psychological Measurement,68(5),845-861.
  20. Klein, F.,Hedrick, E. R.(Trans.),Noble, C. A.(Trans.)(2004).Elementary mathematics from an advanced standpoint: Arithmetic-Algebra-Analysis.New York:Dover.
  21. Kösa, T.,Karakuş, F.(2010).Using dynamic geometry software Cabri 3D for teaching analytic geometry.Procedia Social and Behavioral Sciences,2(2),1385-1389.
  22. Lakatos, I.(1978).The methodology of scientific research programmes.Cambridge, UK:Cambridge University Press.
  23. Lincoln, Y. S.,Guba, E. G.(1985).Naturalistic inquiry.Newbury Park, CA:Sage.
  24. Ma, L.(1999).Knowing and teaching elementary mathematics: Teachers understanding of fundamental mathematics in China and the United States.Mahwah, NJ:Lawrence Earlbaum.
  25. Marks, R.(1987).Those, who appreciate: A case study of Joe, a beginning mathematics teacher.Stanford, CA:Stanford University, School of Education.
  26. National Research Council(2001).Knowing and learning mathematics for teaching: Proceedings of a workshop,Washington, DC:
  27. Richardson, V.(Ed.)(2001).Handbook of research on teaching.New York:Macmillan.
  28. Seago, N.(2003).Using video as an object of inquiry for mathematics teaching and learning.Advances in Research on Teaching,10,259-286.
  29. Shulman, L. S.(1986).Those who understand: Knowledge growth in teaching.Educational Researcher,15,4-14.
  30. Steinberg, R.,Marks, R.,Haymore, J.(1985).Teachers' knowledge and structuring in mathematics.Palo Alto, CA:Stanford University, School of Education.
  31. Šunderlík, J.,Ceretková, S.(2012).Identification of learning situation during prospective teachers' student teaching in two countries.12th International Congress on Mathematics Education (ICME 12),Seoul, South Korea:
  32. Tirosh, D.(Ed.),Wood, T.(Ed.)(2008).International handbook of mathematics teacher education: Tools and processes in mathematics teacher education.Rotterdam, The Netherlands:Sense.
  33. Vale, C.,McAndrew, A.,Krishnan, S.(2011).Connecting with the horizon: developing teachers' appreciation of mathematical structure.Journal of Mathematics Teacher Education,14(3),193-212.
  34. Wilson, S.(1988).Stanford, CA,Stanford University.
  35. Zazkis, R.,Mamolo, A.(2011).Reconceptualizing knowledge at the mathematical horizon.For the Learning of Mathematics,31(2),8-13.
  36. Zazkis, R.,Mamolo, A.(2012).Continuing conversations towards the horizon.For the Learning of Mathematics,32(1),22-23.