题名

國小三年級課室以數學臆測活動引發學生論證初探

并列篇名

The Exploration of Conjecturing Provoking Argumentation of Mathematics in a Third Grade Classroom

DOI

10.6173/CJSE.2015.2301.04

作者

林碧珍(Pi-Jen Lin)

关键词

小學三年級 ; 數學課堂論證結構 ; 數學論證 ; 數學臆測 ; Third Grade ; Structure of Argumentation in Classroom ; Argumentation ; Conjecture

期刊名称

科學教育學刊

卷期/出版年月

23卷1期(2015 / 03 / 01)

页次

83 - 110

内容语文

繁體中文

中文摘要

本研究旨在探討數學臆測活動融入三年級課堂學生所展現的數學論證歷程。本研究的數學臆測是數學課堂中,先由學生造例以建立資料;然後觀察以尋求規律性,並提出猜想;再共同檢驗猜想的正確性,及驗證猜想的一般化之歷程。數學論證是在進行臆測教學活動脈絡下產生的,故它是數學臆測的一部分;它是從建立資料及證據作為形成論述或檢驗論述的依據,以支持結論的過程。本研究採用質性研究法,觀察一位個案教師將臆測融入三年級的數學課堂教學。蒐集資料包括錄影及錄音逐字稿、學生解題紀錄、觀察記錄、任務設計簡案、教師的數學日誌。學生的論證分析以Toulmin(1958)的論證模式為基礎,並修正Reid與Knipping(2010)的論證結構圖而畫出論證結構圖。研究發現:數學臆測活動可以引發三年級學生的數學論證。對數學知識不夠豐富的三年級學生,大都是以例子作為推論依據,以捍衛自己提出的猜想,學生所展現的論證層次是落在Balacheff(1988)的原始試驗層次。臆測活動不僅可以培養學生的論證能力並意義化數學性質,並在論證過程中釐清了學生的迷思概念、修正學生不精確的數學語言。學生的論證結構圖可以顯現出教師在學生論證過程中介入的時機及次數,也可以顯示學生從提出猜想通往結論所發生的反駁、推論依據的論證歷程。

英文摘要

The purpose of the study was to explore how third-graders engaged in mathematical argumentation where conjecturing was integrated into mathematics instruction in a classroom. Conjecturing involving in the study is defined as a reciprocal process while facing an uncertain mathematical task in classroom, students via individual or small group construct data, observe and look for the pattern of the discrete cases, propose a plausible conjecture in accordance with given conditions, test, justify and verify the conjectures proposed. Argumentation defined in the study is the product of the conjecturing, so that it becomes the part of the conjecturing. Argumentation is a process from data to conclusion by using warrants or backings as arguments. The study adopted a qualitative research method to observe a third-grader teacher who was participating in the "Designing Conjecturing Tasks for Enhancing Teachers Professional Development" project that is designed to support in-service teachers in designing conjecturing tasks and integrate conjecturing into classrooms. The data collected for the study included videotapes and audio-tapes transcription verbatim, students' work scanned, researcher's note, and teacher's brief lesson plan. The analysis of argumentation was based on Toulmin's model (1958) and modified from Reid & Knipping (2010) argumentation structures. The results indicated that conjecturing was able to initiate students' argumentation. Third-graders mostly utilized empirical examples as warrants for supporting their conjectures. The quality of argumentation for the task used in the study was staying in Balacheff's (1988) level of naive empiricism. Conjecturing was not only to promote students' argumentation but also conceptualize the meaning of mathematical concepts or mathematics relationships, clarify students' misconception, and modify students' unprecise mathematical language. The structure of argumentation revealed the timing and frequencies of teacher's innervations. The argumentation structure displayed the frequencies of warrants and where the warrants occurred after students gave a conjecture approaching to conclusion.

主题分类 社會科學 > 教育學
参考文献
  1. International Congress on Mathematics Education. (2012). Topic study groups. Retrieved November 5, 2013, from http://www.icme12.org/sub/sub02_05.asp
  2. Knipping, C. (2003). Argumentation structures in classroom proving situations. Retrieved May 6, 2013, from http://ermeweb.free/fr/CERME3/Groups/TG4/TG4_Knipping_cerme3.pdf
  3. Aberdein, A.(Ed.),Dove, I. J.(Ed.)(2013).The argument of mathematics.New York:Springer Dordrecht.
  4. Boero, P.,Douek, N.,Grauti, R.(2003).Children's conceptions of infinity of numbers in a fifth grade classroom discussion context.Proceedings of the 27th annual conference of the international group for the psychology of mathematics Education,Honolulu, HI:
  5. Cañadas, M. C.,Castro, E.(2005).A proposal of categorization for analyzing inductive reasoning.Proceedings of the CERME 4 international conference,Catalonia, Spain:
  6. Cañadas, M. C.,Deulofeu, J.,Figueiras, L.,Reid, D.,Yevdokimov, O.(2007).The conjecturing process: Perspectives in theory and implications in practice.Journal of Teaching and Learning,5(1),55-72.
  7. Cobb, P.(Ed.),Bauersfeld, H.(Ed.)(1995).The emergence of mathematics meaning: Interaction in classroom cultures.Hillsdale, NJ:Lawrence Erlbaum.
  8. Douek, N.(1999).Argumentative aspects of proving: Analysis of some undergraduate mathematics students' performance.Proceedings of the 23rd conference of the international group for the psychology of mathematics education,Haifa, Israel:
  9. Hanna, G.(Ed.),de Villers, M.(Ed.)(2012).Proof and proving in mathematics education: The 19th ICMI study.New York:Springer.
  10. Healy, L.,Hoyles, C.(1998).Justifying and proving in school mathematics: Technical report on the nationwide survey.London:Institute of Education, University of London.
  11. Heinze, A.,Cheng, Y.-H.,Ufer, S.,Lin, F.-L.,Reiss, M. K.(2008).Strategies to foster students' competencies in constructing multi-steps geometric proofs: Teaching experiments in Taiwan and Germany.ZDM: The International Journal on Mathematics Education,40(3),443-453.
  12. Johnston-Wilder, S.,Mason, J.(2004).Fundamental constructs in mathematics education.New York:RoutledgeFalmer.
  13. Kilpatrick, J.(Ed.),Swafford, J.(Ed.),Findell, B.(Ed.)(2001).Adding it up: Helping children learn mathematics.Washington, DC:National Academy Press.
  14. Knipping, C.(2008).A method for revealing structures of argumentations in classroom proving processes.ZDM The International Journal on Mathematics Education,40(3),427-441.
  15. Ko, Y. Y.(2010).Mathematics teachers' conceptions of proof: Implications for educational research.International Journal of Science and Mathematics Education,8,1109-1129.
  16. Krummheuer, G.(2007).Argumentation and participation in the primary mathematics classroom: Two episodes and related theoretical abduction.Journal of Mathematical Behavior,26(1),60-82.
  17. Lakatos, I.(1976).Proofs and refutations: The logic of mathematical discovery.New York:Cambridge University Press.
  18. Lin, F.-L.(Ed.),Hsieh, F.-J.(Ed.),Hanna, G.(Ed.),de Villiers, M.(Ed.)(2009).Proceedings of the ICMI study 19 conference: Proof and proving in mathematics education,Taipei, Taiwan:
  19. Mason, J.,Burton, L.,Stacey, K.(1985).Thinking mathematically.Menlo Park, CA:Addison-Wesley.
  20. National Council of Teachers of Mathematics(2000).Principles and standards for school mathematics.Reston, VA:National Council of Teachers of Mathematics.
  21. Pedemonte, B.(2007).How can the relationship between argumentation and proof be analyzed?.Educational Studies in Mathematics,66,23-41.
  22. Pimm, D.(Ed.)(1988).Mathematics, teachers, and children.London:Hoddler and Stoughton.
  23. Polya, G.(1968).Mathematics and plausible reasoning.Princeton, NJ:Princeton University Press.
  24. Polya, G.(1957).How to solve it.Princeton, NJ:Princeton University Press.
  25. Reid, D. A.(2002).Conjecturing and refutations in grade 5 mathematics.Journal for Research in Mathematics Education,33(1),5-29.
  26. Reid, D. A.,Knipping, C.(2010).Proof in mathematics education: Research, learning, and teaching.Rotterdam, The Netherlands:Sense.
  27. Stein, M. K.,Lane, S.(1996).Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project.Educational Research and Evaluation,2,50-80.
  28. Stylianides, A. J.(2007).Proof and proving in school mathematics.Journal for Research in Mathematics Education,38(3),289-321.
  29. Toulmin, S. E.(1958).The uses of argument.Cambridge, UK:Cambridge University Press.
  30. 林碧珍、周欣怡(2013)。國小學生臆測未知結果之論證結構:以四邊形沿一對角線剪開為例。第29屆科學教育國際研討會,彰化市:
  31. 林碧珍、馮博凱(2013)。國小學生反駁錯誤命題的論證結構—以速率單元為例。第29屆科學教育國際研討會,彰化市:
  32. 林碧珍、鍾雅芳(2013)。六年級學生解決數字規律性問題的數學臆測思維歷程。第5屆科技與數學教育國際學術研討會暨數學教學工作坊,臺中市:
  33. 林福來(2010)。,臺北市:行政院國家科學委員會。
  34. 林福來(2003)。,臺北市:行政院國家科學委員會。
  35. 秦爾聰、劉致演、楊讚文(2010)。以臆測為中心的探究教學對高中學生數學素養影響之研究。全球華人科學教育會議2010,香港:
  36. 秦爾聰、賴紀寧(2010)。以臆測為中心的數學寫作活動對學生數學素養影響歷程之研究。全球華人科學教育會議2010,香港:
  37. 秦爾聰、簡大維、李立凱(2010)。臆測為中心之數學教學活動設計─以數列與級數為例。全球華人科學教育會議2010,香港:
  38. 教育部(2008)。國民中小學九年一貫課程綱要。臺北市:作者。
  39. 教育部(2000)。國民中小學九年一貫課程暫行綱要。臺北市:作者。
  40. 教育部(2003)。國民中小學九年一貫課程正式綱要。臺北市:作者。
  41. 陳英娥(2002)。教室中的數學論證之研究。教育研究資訊,10(6),111-132。
  42. 陳英娥、林福來(1998)。數學臆測的思維模式。科學教育學刊,6(2),191-218。
  43. 蔡文煥(2010)。,臺北市:行政院國家科學委員會。
  44. 蔡永林、秦爾聰(2009)。發展以臆測為中心的「一元一次方程式」教學模組。2009數理教師PCK應用與實務研討會,桃園:
被引用次数
  1. 余姿縈(2018)。初任教師建立數學臆測規範之行動研究:以高年級為例。清華大學數理教育研究所碩士在職專班學位論文。2018。1-113。
  2. 王鵬豪(2020)。高低年級數學臆測教學的規範之比較。清華大學數理教育研究所學位論文。2020。1-117。