题名

機器人跨領域STEM主題式統整課程與任務導向式教學的設計及評鑑

并列篇名

Evaluation and Design of Cross-Disciplinary Robotics STEM Curriculum Based on Thematic Integration and Task-Oriented Instruction

DOI

10.6173/CJSE.201812_26(4).0002

作者

張基成(Chi-Cheng Chang);陳怡靜(Yiching Chen)

关键词

主題統整 ; 任務導向式教學 ; 統整課程 ; 跨領域STEM ; 機器人 ; Thematic Integration ; Task-Oriented Instruction ; Integrative Curriculum ; Cross-Disciplinary STEM ; Robot

期刊名称

科學教育學刊

卷期/出版年月

26卷4期(2018 / 12 / 01)

页次

305 - 331

内容语文

繁體中文

中文摘要

本研究以跨領域主題統整模式之網狀式方法,建構出帆船機器人跨領域STEM(Science, Technology, Engineering, and Mathematics)統整課程之知識圖,並結合線串式方法來呈現各相關知識之間的連結關係。另運用重理解的課程設計模式發展出帆船機器人跨領域STEM統整課程。採立意取樣針對某高中一年級某班42位學生(男35人,女7人),由一位教師進行任務導向的教學。學生採分組合作學習方式,每2位1組,共21組。研究結果顯示,在七個領域的知識測驗成績皆有顯著的進步。技能表現方面,學生在程式設計的表現最佳,其次為帆船設計、機構組裝,且皆達顯著水準。學生對STEM的態度有顯著的提升。五個顯著提升的興趣依序為工程設計;程式設計;想繼續就讀工程、科學或科技相關科系;未來想從事工程或程式設計相關工作;機器人」。三個未顯著提升的興趣依序為「數學」、「科學」、及「未來是否想從事數學或科學的工作」。本研究發展的帆船機器人跨領域STEM統整課程及任務導向教學策略,可供後續發展相關主題統整課程與教學之參考。

英文摘要

This study has constructed a knowledge map of cross-disciplinary integrative STEM (Science, Technology, Engineering, and Mathematics) curriculum on robotic sailboat by using the webbed approach in the Cross-Disciplinary Thematic Integration Model. The thread method was used to display the linking relationships among relevant concepts on the map. Moreover, the Understanding by Design Model (UbD) was used to develop cross-disciplinary integrative STEM curriculum with robotic sailboat. Purposive sampling approach was adopted to select 42 first-grade students (35 males and 7 females) from one class in a senior high school. An instructor undertook task-oriented instruction and students undertook task-oriented hands-on activity. There were totally 21 teams with 2 members in each team via cooperative learning. Research results showed that students made significant progress on 7 fields of the test. Regarding skill performance, students made the highest performance on programming design; followed by sailboat design, mechanism assembling and installing, and significant level were reached in all activities. Attitude toward STEM showed significant improvement. Five significantly enhanced interests were engineering design, programming design, intention to study engineering or technology, intention to work in engineering field, and robotics. Three insignificantly enhanced interests were mathematics, science, and intention to work in mathematics or science field. The cross-disciplinary integrative STEM curriculum on robotic sailboat and the task-oriented instructional strategy might be the references for future development in integrative course and instruction of relevant themes.

主题分类 社會科學 > 教育學
参考文献
  1. 游家政(2000)。學校課程的統整及其教學。課程與教學,3(1),19-37+140。
    連結:
  2. Abdel-Salam, T.,Sawaf, N. E.,Williamson, K.(2009).Robotics explorations to enhance information technology literacy in rural schools.Journal of Communication and Computer,6(3),55-63.
  3. Alimisis, D.(2013).Educational robotics: Open questions and new challenges.Themes in Science & Technology Education,6(1),63-71.
  4. Altin, H.,Pedaste, M.(2013).Learning approaches to applying robotics in science education.Journal of Baltic Science Education,12(3),365-377.
  5. Araújo, A.,Portugal, D.,Couceiro, M. S.,Rocha, R. P.(2015).Integrating Arduino-based educational mobile robots in ROS.Journal of Intelligent & Robotic Systems,77(2),281-298.
  6. Avsec, S.,Rihtarsic, D.,Kocijancic, S.(2014).A predictive study of learner attitudes toward open learning in a robotics class.Journal of Science Education and Technology,23(5),692-704.
  7. Barak, M.,Zadok, Y.(2007).Robotics projects and learning concepts in science, technology and problem solving.International Journal of Technology and Design Education,19(3),289-307.
  8. Barker, B. S.(Ed.)(2012).Robots in K-12 Education: A new technology for learning.Hershey, PA:IGI Global.
  9. Barker, B. S.,Ansorge, J.(2007).Robotics as means to increase achievement scores in an informal learning environment.Journal of Research on Technology in Education,39(3),229-243.
  10. Beane, J. A.(1997).Curriculum integration: Designing the core of democratic education.New York:Teachers College Press.
  11. Benitti, F. B. V.(2012).Exploring the educational potential of robotics in schools: A systematic review.Computers & Education,58(3),978-988.
  12. Bers, M. U.(2007).Project interactions: A multigenerational robotic learning environment.Journal of Science Education and Technology,16(6),537-552.
  13. Bers, M. U.,Flannery, L.,Kazakoff, E. R.,Sullivan, A.(2014).Computational thinking and tinkering: Exploration of an early childhood robotics curriculum.Computers & Education,72,145-157.
  14. Campbell, D. M.,Harris, L. S.(2001).Collaborative theme building: How teachers write integrated curriculum.Boston, MA:Allyn & Bacon.
  15. Diamond, R. M.(2008).Designing and assessing courses and curricula: A practical guide.San Francisco, CA:Jossey-Bass.
  16. Doerschuk, P.,Bahrim, C.,Daniel, J.,Kruger, J.,Mann, J.,Martin, C.(2016).Closing the gaps and filling the STEM pipeline: A multidisciplinary approach.Journal of Science Education and Technology,25(4),682-695.
  17. Drake, S. M.(2012).Creating standards-based integrated curriculum: The common core state standards edition.Thousand Oaks, CA:Corwin Press.
  18. Eguchi, A.(2016).RoboCupJunior for promoting STEM education, 21st century skills, and technological advancement through robotics competition.Robotics and Autonomous Systems,75,692-699.
  19. Fogarty, R.,Stoehr, J.(2008).Integrating curricula with multiple intelligences teams, themes, & threads.Thousand Oaks, CA:Corwin.
  20. Fortunati, L.,Esposito, A.,Ferrin, G.,Viel, M.(2014).Approaching social robots through playfulness and doing-it-yourself: Children in action.Cognitive Computation,6(4),789-801.
  21. Hernandez, P.,Bodin, R.,Elliott, J. W.,Ibrahim, B.,Rambo-Hernandez, K. E.,Chen, T. W.(2014).Connecting the STEM dots: Measuring the effect of an integrated engineering design intervention.International Journal of Technology and Design Education,24(1),107-120.
  22. Jaulin, L.,Le Bars, F.(2013).An interval approach for stability analysis: Application to sailboat robotics.IEEE Transactions on Robotics,29(1),282-287.
  23. Jojoa, E. M. J.,Bravo, E. C.,Cortes, E. B. B.(2010).Tool for experimenting with concepts of mobile robotics as applied to children's education.IEEE Transactions on Education,53(1),88-95.
  24. Kirkpatrick, D. L.,Kirkpatrick, J. D.(2006).Evaluating training programs: The four levels.San Francisco, CA:Berrett-Koehler.
  25. Kirschner, P. A.,Sweller, J.,Clark, R. E.(2006).Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching.Educational Psychologist,41(2),75-86.
  26. Kraiger, K.,Ford, J. K.,Salas, E.(1993).Application of cognitive, skill-based, and affective theories of learning outcomes to new methods of training evaluation.Journal of Applied Psychology,78(2),311-328.
  27. López-Rodríguez, F. M.,Cuesta, F.(2016).Andruino-A1: Low-cost educational mobile robot based on Android and Arduino.Journal of Intelligent & Robotic Systems,81(1),63-76.
  28. Merrill, M. D.(2009).Finding e3(effective, efficient, and engaging) instruction.Educational Technology,49(3),15-26.
  29. Merrill, M. D.(2007).A task-centered instructional strategy.Journal of Research on Technology in Education,40(1),5-22.
  30. Nugent, G.,Barker, B.,Grandgenett, N.,Adamchuk, V. I.(2010).Impact of robotics and geospatial technology interventions on youth STEM learning and attitudes.Journal of Research on Technology in Education,42(4),391-408.
  31. Nugent, G.,Barker, B.,Grandgenett, N.,Welch, G.(2016).Robotics camps, clubs, and competitions: Results from a US robotics project.Robotics and Autonomous Systems,75,686-691.
  32. Park, I.-W.,Kim, J.-O.(2011).Philosophy and strategy of minimalism-based user created robots (UCRs) for educational robotics-education, technology and business viewpoint.International Journal of Robots, Education and Art,1(1),26-38.
  33. Petre, M.,Price, B.(2004).Using robotics to motivate "back door" learning.Education and Information Technologies,9(2),147-158.
  34. Rihtaršič, D.,Avsec, S.,Kocijancic, S.(2016).Experiential learning of electronics subject matter in middle school robotics courses.International Journal of Technology and Design Education,26(2),205-224.
  35. Sullivan, F. R.,Heffernan, J.(2016).Robotic construction kits as computational manipulatives for learning in the STEM disciplines.Journal of Research on Technology in Education,48(2),105-128.
  36. Sullivan, F. R.,Moriarty, M. A.(2009).Robotics and discovery learning: Pedagogical beliefs, teacher practice, and technology integration.Journal of Technology and Teacher Education,17(1),109-142.
  37. Valero-Gómez, A.,González-Gómez, J.,Treviño, R.(2013).A new paradigm for open robotics research and education with the C++ OOML.Autonomous Robots,34(3),233-249.
  38. Wiggins, G.,McTighe, J.(2011).The understanding by design guide to creating high-quality units.Alexandria, VA:ASCD.
  39. Williams, D. C.,Ma, Y.,Prejean, L.,Ford, M. J.,Lai, G.(2008).Acquisition of physics content knowledge and scientific inquiry skills in a robotics summer camp.Journal of Research on Technology in Education,40(2),201-216.
  40. Yarker, M. B.,Park, S.(2012).Analysis of teaching resources for implementing an interdisciplinary approach in the K-12 classroom.Eurasia Journal of Mathematics, Science and Technology Education,8(4),223-232.
  41. Yuen, T. T.,Boecking, M.,Stone, J.,Tiger, E. P.,Gomez, A.,Guillen, A.(2014).Group tasks, activities, dynamics, and interactions in collaborative robotics projects with elementary and middle school children.Journal of STEM Education: Innovations and Research,15(1),39-45.
被引用次数
  1. 黃瓊儀,郭晴之,張美珍(2022)。行動載具應用於國小跨領域健康體位專題式課程教學歷程與成效之研究。高雄師大學報:教育與社會科學類,52,1-26。
  2. 林孟安(2023)。從教育美學觀點探究整合STEAM學科的數學教育實踐。學校行政,148,136-161。
  3. 顏慶祥,陳世文(2021)。「探究與實作」課程在普通高中自然科學領域實施概況之調查研究。課程與教學,24(4),135-166。
  4. 張美珍,李國成(2023)。高中生參與融入情境設計的機器人體驗活動之學習成效研究。高雄師大學報:教育與社會科學類,54,23-47。
  5. (2020)。跨領域課程發展與實踐:以東華附小專題探究課程為例。教育研究月刊,316,36-54。
  6. (2021)。單一課程融入跨領域主題式STEAM課程統整設計對大學生學科探究實作表現之研究。教育學刊,57,75-125。
  7. (2024).Research on STEAM Education Theses in Taiwan: Literature Analysis, Development Trends, and Future Prospects.教育資料與圖書館學,61(2),161-209.