题名

透過建模教學提升學生在化學電池概念和建模能力上的表現

并列篇名

Eliciting Students' Understanding of Chemical Battery and Modeling Competence via Modeling-Based Instruction

DOI

10.6173/CJSE.202106_29(2).0003

作者

曾茂仁(Mao-Ren Zeng);邱美虹(Mei-Hung Chiu)

关键词

化學電池 ; 建模能力 ; 建模教學 ; 科學學習 ; Electrochemical Cell ; Modeling Competence ; Modeling-Based Instruction ; Science Learning

期刊名称

科學教育學刊

卷期/出版年月

29卷2期(2021 / 06 / 01)

页次

137 - 165

内容语文

繁體中文

中文摘要

建模是科學家觀察現象、透過實驗證據而發展出科學理論以解釋現象的歷程。學生知識建構的歷程也需透過建立、修正與精緻模型,方能使其逐漸與科學模型相似。因此,科學學習的過程中培養學生建模能力是重要且必須的目標。本研究以四階段與八步驟之建模歷程設計國中階段化學電池課程,探討教師使用建模文本進行建模本位教學(Modeling-Based Instruction, MBI),對學生化學電池的科學概念與建模能力的影響。本研究化學電池概念問卷是由成分(電極、電解液、鹽橋與電器)、關係(反應方程式與原理)、系統(離子與電子移動)組成,共計44題,由兩位科學教育博士且具備MBI與化學背景的高中與國中教師、資深高中化學與國中自然科教師各一位建立專家效度,預測試卷的內部一致性信度為α = .76。研究對象為臺北市某國中七、八年級學生共51位,分成MBI組(n = 24)與一般教學組(n = 27),研究者收集學生教學前後的化學電池評量與晤談資料。研究結果顯示,MBI組於科學概念的整體表現、成分、關係與系統此四項學習成效較一般教學組高,且在科學概念的整體表現與系統達顯著差異(p < .001)。針對建模能力的表現,MBI組於模型選擇、建立、效化與應用成效優於一般教學組。綜合以上研究結果可知MBI的確有利於學生在化學電池主題的學習。

英文摘要

Modeling is a process by which scientists develop theories to explain scientific phenomena based on the observations of natural and experimental evidence. Therefore, an important and essential goal in science education is to cultivate students' modeling competences. The purpose of this study is to use modeling-based instruction (MBI) to investigate the effectiveness of development of students' electrochemical cell concepts and modeling competences in learning electrochemistry. Participants were divided into two groups: (1) a MBI group (n = 24) and (2) a command instruction (CI) group (n = 27). The difference between these groups was that MBI was presented with explicit descriptions and representations of modeling processes during instruction. Both groups were asked to answer questions on an electrochemical cell assessment questionnaire. The items in the modified questionnaire were validated by three chemistry teachers and one science education professor. The internal consistency Cronbach's α result for the questionnaire items was .76. The findings revealed that: (1) the students in the MBI group significantly outperformed the CI group on the overall content knowledge about electrochemical cell (p < .001), and (2) the students in the MBI group outperformed the CI group on overall modeling competence (p < .001). These findings suggest that the MBI facilitated students learning of the electrochemical cell concepts and better enhanced their modeling competences.

主题分类 社會科學 > 教育學
参考文献
  1. 林靜雯, J.-W.,林怡瑾, Y.-C.(2015)。五年級資優生與專家使用圖形化程式(NXT-G)之心智模式及建模歷程。科學教育學刊,23(3),293-319。
    連結:
  2. 張志康, C.-K.,邱美虹, M.-H.(2009)。建模能力分析指標的發展與應用—以電化學為例。科學教育學刊,17(4),319-342。
    連結:
  3. AHalloun, I.(1996).Schematic modeling for meaningful learning of physics.Journal of Research in Science Teaching,33,1019-1041.
  4. Apedoe, X. S.(2008).Engaging students in inquiry: Tales from an undergraduate geology laboratory-based course.Science Education,92(4),631-663.
  5. Baumfalk, B.,Bhattacharya, D.,Vo, T.,Forbes, C.,Zangori, L.,Schwarz, C.(2018).Impact of model-based science curriculum and instruction on elementary students’ explanations for the hydrosphere.Journal of Research in Science Teaching,56(5),570-597.
  6. Campbell, T.,McKenna, T. J.,An, J.,Rodriguez, L.(2019).A responsive methodological construct for supporting learners’ developing modeling competence in modeling-based learning environments.Towards a competence-based view on models and modeling in science education,New York, NY:
  7. Chang, H.-Y.,Quintana, C.,Krajcik, J. S.(2009).The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter.Science Education,94(1),73-94.
  8. Cheng, M.-F.,Lin, J.-L.(2015).Investigating the relationship between students’ views of scientific models and their development of models.International Journal of Science Education,37(15),2453-2475.
  9. Cheng, M.-F.,Lin, J.-L.,Lin, S.-Y.,Cheng, C.-H.(2017).Scaffolding middle school and high school students’ modeling processes.Journal of Baltic Science Education,16(2),207-217.
  10. Chiu, M.-H.,Lin, J.-W.(2019).Modeling competence in science education.Disciplinary and Interdisciplinary Science Education Research,1
  11. Clement, J.(1989).Learning via model construction and criticism.Handbook of creativity,New York, NY:
  12. Crawford, B. A.(2014).From inquiry to scientific practices in the science classroom.Handbook of research on science education,New York, NY:
  13. Doymus, K.,Karacop, A.,Simsek, U.(2010).Effects of jigsaw and animation techniques on students’ understanding of concepts and subjects in electrochemistry.Educational Technology Research and Development,58,671-691.
  14. Duncan, R. G.,Cavera, V. L.(2015).DCIs, SEPs, and CCs, oh my! Understanding the three dimensions of the NGSS.Science Scope,39(2)
  15. Forbes, C. T.,Lange-Schubert, K.,Böschl, F.,Vo, T.(2019).Supporting primary students deling competency for water systems.Towards a competence-based view on models and modeling in science education,New York, NY:
  16. Garnett, P. J.,Treagust, D. F.(1992).Conceptual difficulties experienced by senior highschool students of electrochemistry: Electric circuits and oxidation-reduction equations.Journal of Research in Science Teaching,29(2),121-142.
  17. Garnett, P. J.,Treagust, D. F.(1992).Conceptual difficulties experienced by senior highschool students of electrochemistry: Electrochemical (galvanic) and electrolytic cells.Journal of Research in Science Teaching,29(10),1079-1099.
  18. Gilbert, J. K.,Justi, R.(2016).Facing the challenges to science education in schools: The contribution of modelling.Modelling-based teaching in science education,New York, NY:
  19. Gobert, J. D.,Pallant, A.(2004).Fostering students’ epistemologies of models via authentic model-based tasks.Journal of Science Education and Technology,13,7-22.
  20. Günter, T.,Alpat, S. K.(2017).The effects of problem-based learning (PBL) on the academic achievement of students studying “electrochemistry.Chemistry Education Research and Practice,18,78-98.
  21. Hempel, C. G.(1952).Fundamentals of concept formation in empirical science.Chicago, IL:University of Chicago Press.
  22. Jeong, H.,Songer, N. B.,Lee, S.-Y.(2007).Evidentiary competence: Sixth graders’ understanding for gathering and interpreting evidence in scientific investigations.Research in Science Education,37,75-97.
  23. Jong, J.-P.,Chiu, M.-H.,Chung, S.-L.(2015).The use of modeling-based text to improve students’ modeling competencies.Science Education,99(5),986-1018.
  24. Justi, R. S.,Gilbert, J. K.(2002).Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers.International Journal of Science Education,24,369-387.
  25. King, G. P.,Bergan-Roller, H.,Galt, N.,Helikar, T.,Dauer, J. T.(2019).Modelling activities integrating construction and simulation supported explanatory and evaluative reasoning.International Journal of Science Education,41(13),1764-1786.
  26. Klieme, E.,Hartig, J.,Rauch, D.(2008).The concept of competence in educational contexts.Assessment of competencies in educational contexts,Cambridge, UK:
  27. Krajcik, J.,Blumenfeld, P. C.,Marx, R. W.,Bass, K. M.,Fredricks, J.,Soloway, E.(1998).Inquiry in project-based science classrooms: Initial attempts by middle school students.Journal of the Learning Sciences,7(3-4),313-350.
  28. Krell, M.,Reinisch, B.,Krüger, D.(2015).Analyzing students’ understanding of models and modeling referring to the disciplines biology, chemistry, and physics.Research in Science Education,45,367-393.
  29. Loh, A. S. L.,Subramaniam, R.(2018).Mapping the knowledge structure exhibited by a cohort of students based on their understanding of how a galvanic cell produces energy.Journal of Research in Science Teaching,55,777-809.
  30. Louca, L. T.,Zacharia, Z. C.(2014).Examining learning through modeling in K-6 science education.Journal of Science Education and Technology,24,192-215.
  31. Mayer, K.,Krajcik, J.(2015).Designing and assessing scientific modeling tasks.Encyclopedia of science education,Dordrecht, The Netherland:
  32. Mierdel, J.,Bogner, F. X.(2019).Comparing the use of two different model approaches on students’ understanding of DNA models.Education Sciences,9(2)
  33. Namdar, B.,Shen, J.(2015).Modeling-oriented assessment in K-12 science education: A synthesis of research from 1980 to 2013 and new directions.International Journal of Science Education,37,993-1023.
  34. National Research Council(2000).Inquiry and the national science education standards: A guide for teaching and learning.Washington, DC:The National Academies Press.
  35. National Research Council(2013).Next generation science standards: For states, by states.Washington, DC:The National Academies Press.
  36. National Research Council(1996).National science education standards.Washington, DC:The National Academies Press.
  37. Nguyen, H.,Santagata, R.(2020).Impact of computer modeling on learning and teaching systems thinking.Journal of Research in Science Teaching,58(5),661-688.
  38. Nicolaou, C. T.,Constantinou, C. P.(2014).Assessment of the modeling competence: A systematic review and synthesis of empirical research.Educational Research Review,13,52-73.
  39. Osborne, J.(2014).Teaching scientific practices: Meeting the challenge of change.Journal of Science Teacher Education,25(2),177-196.
  40. Osman, K.,Lee, T. T.(2014).Impact of interactive multimedia module with pedagogical agents on students’ understanding and motivation in the learning of electrochemistry.International Journal of Science and Mathematics Education,12,395-421.
  41. Prins, G. T.,Bulte, A. M. W.,Van Driel, J. H.,Pilot, A.(2009).Students’ involvement in authentic modelling practices as contexts in chemistry education.Research in Science Education,39,681-700.
  42. Sanger, M. J.,Greenbowe, T. J.(1997).Common student misconceptions in electrochemistry: Galvanic, electrolytic, and concentration cells.Journal of Research in Science Teaching,34(4),377-398.
  43. Schwarz, C. V.,Gwekwerere, Y. N.(2007).Using a guided inquiry and modeling instructional framework (EIMA) to support preservice K-8 science teaching.Science Education,91,158-186.
  44. Schwarz, C. V.,Reiser, B. J.,Davis, E. A.,Kenyon, L.,Achér, A.,Fortus, D.(2009).Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners.Journal of Research in Science Teaching,46,632-654.
  45. Schwarz, C. V.,White, B. Y.(2005).Metamodeling knowledge: Developing students’ understanding of scientific modeling.Cognition and Instruction,23,165-205.
  46. Sessen, B.,Tarhan, L.(2013).Inquiry-based laboratory activities in electrochemistry: High school students’ achievements and attitudes.Research in Science Education,43,413-435.
  47. Tarhan, L.,Acar, B.(2007).Problem-based learning in an eleventh grade chemistry class: “Factors affecting cell potential..Research in Science & Technological Education,25(3),351-369.
  48. Tsaparlis, G.(2019).Teaching and learning electrochemistry.Israel Journal of Chemistry,59,478-492.
  49. Upmeier zu Belzen, A.,Krüger, D.(2010).Modellkompetenz im biologieunterricht.Zeitschrift für Didaktik der Naturwissenschaften,16,41-57.
  50. Upmeier zu Belzen, A.,van Driel, J.,Krüger, D.(2019).Introducing a framework for modeling competence.Towards a competence-based view on models and modeling in science education,New York, NY:
  51. Yang, E.-m.,Andre, T.,Greenbowe, T. J.,Tibell, L.(2003).Spatial ability and the impact of visualization/animation on learning electrochemistry.International Journal of Science Education,25(3),329-349.
  52. Yürük, N.(2007).The Effect of supplementing instruction with conceptual change texts on students’ conceptions of electrochemical cells.Journal of Science Education and Technology,16(6),515-523.
  53. Zangori, L.,Vo, T.,Forbes, C. T.,Schwarz, C. V.(2017).Supporting 3rd-grade students model-based explanations about groundwater: A quasi-experimental study of a curricular intervention.International Journal of Science Education,39(11),1421-1442.
  54. 李驥, K. G.,邱美虹, M.-H.(2019)。NGSS和12年國民基本教育中探究、實作和建模的比較與分析。科學教育月刊,421,19-31。
  55. 邱美虹, M.-H.(2015)。科技部科技部,臺北市=Taipei, Taiwan:科技部=Ministry of Science and Technology。
  56. 邱美虹, M.-H.(2016)。科學模型與建模:科學模型、科學建模與建模能力。臺灣化學教育,11
  57. 邱美虹, M.-H.,曾茂仁, M.-R.(2018)。科學建模本位的探究教學之教材設計—以化學電池為例。臺灣化學教育,28
  58. 國家教育研究院(2014年11月28日)。十二年國民基本教育課程綱要:總綱。查詢日期:2021年6月14日,檢自https://www.naer.edu.tw/upload/1/16/doc/288/%E5%8D%81%E4%BA%8C%E5%B9%B4%E5%9C%8B%E6%95%99%E8%AA%B2%E7%A8%8B%E7%B6%B1%E8%A6%81%E7%B8%BD%E7%B6%B1.pdf。[National Academy for Educational Research. (2014, November 28). Curriculum guidelines of 12-year basic education: General guidelines. Retrieved June 14, 2021, from https://www.naer.edu.tw/upload/1/16/doc/288/%E5%8D%81%E4%BA%8C%E5%B9%B4%E5%9C%8B%E6%95%99%E8%AA%B2%E7%A8%8B%E7%B6%B1%E8%A6%81%E7%B8%BD%E7%B6%B1.pdf]
  59. 國家教育研究院(2018年11月2日)。十二年國民基本教育課程綱要—國民中小學暨普通型高級中等學校:自然科學領域。查詢日期:2020年11月20日,檢自https://www.naer.edu.tw/upload/1/16/doc/1336/%E5%8D%81%E4%BA%8C%E5%B9%B4%E5%9C%8B%E6%B0%91%E5%9F%BA%E6%9C%AC%E6%95%99%E8%82%B2%E8%AA%B2%E7%A8%8B%E7%B6%B1%E8%A6%81%E5%9C%8B%E6%B0%91%E4%B8%AD%E5%B0%8F%E5%AD%B8%E6%9A%A8%E6%99%AE%E9%80%9A%E5%9E%8B%E9%AB%98%E7%B4%9A%E4%B8%AD%E7%AD%89%E6%A0%A1-%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%B8%E9%A0%98%E5%9F%9F.pdf。[National Academy for Educational Research. (2018, November 2). Curriculum guidelines of 12-year basic education for elementary, junior high schools and general senior high schools: Natural sciences. Retrieved November 20, 2020, from https://www.naer.edu.tw/upload/1/16/doc/1336/%E5%8D%81%E4%BA%8C%E5%B9%B4%E5%9C%8B%E6%B0%91%E5%9F%BA%E6%9C%AC%E6%95%99%E8%82%B2%E8%AA%B2%E7%A8%8B%E7%B6%B1%E8%A6%81%E5%9C%8B%E6%B0%91%E4%B8%AD%E5%B0%8F%E5%AD%B8%E6%9A%A8%E6%99%AE%E9%80%9A%E5%9E%8B%E9%AB%98%E7%B4%9A%E4%B8%AD%E7%AD%89%E6%A0%A1-%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%B8%E9%A0%98%E5%9F%9F.pdf]
  60. 劉俊庚, C.-K.(2011)。臺北市=Taipei, Taiwan,國立臺灣師範大學科學教育研究所=National Taiwan Normal Unversity。
被引用次数
  1. (2024)。探討繪圖導向科學建模教學對國小六年級學童模型建立及系統思考能力影響之研究。科學教育學刊,32(1),33-61。