题名

國小學童問題界定之思維歷程探究:以科學自造活動為例

并列篇名

An Exploration of Elementary School Students' Thought Process in Problem Identification: Taking Science Maker Activity as an Example

DOI

10.6173/CJSE.202212_30(4).0004

作者

吳柏菱(Po-Ling Wu);甄曉蘭(Hsiao-Lan Chen)

关键词

自造教育 ; 科學自造 ; 科學思維 ; 問題界定 ; Maker Education ; Science Maker Activity ; Scientific Thinking ; Problem Identification

期刊名称

科學教育學刊

卷期/出版年月

30卷4期(2022 / 12 / 01)

页次

357 - 379

内容语文

繁體中文;英文

中文摘要

科學自造教育是透過造物活動來驅動和統整科學學習,期望學生能藉由科學知識應用、材料與工具操作來嘗試解決真實世界的生活問題,進而為培養學生具有21世紀關鍵能力奠基。基於問題界定是創造性問題解決之首要且關鍵的步驟,本研究試圖探索國小學生在科學自造活動中的問題界定歷程,並通過觀察和分析學生的小組討論內容,瞭解他們界定問題時的思維和達成界定共識的策略。結果發現,在科學自造活動中,學生會同時為了追求解決真實世界問題及解決自造任務之雙重目標進行問題界定。在問題界定歷程中,學生會根據先備經驗及其科學知識豐富程度、對自造活動歸屬於科學學習的認知、受自造材料吸引的程度、對材料性質的理解與詮釋、以及對自造主題陳述中不同概念的關係位階判斷等因素,產生多元且可能互相衝突的問題界定思維。而在處理問題界定思維的衝突時,學生會藉由連續提問來導引團隊的思維方向、善用團體共備過的科學知識或材料操弄經驗來增進溝通、或是藉由操弄材料將問題情境具象化等策略來促進團體達成問題界定共識。最後,根據研發現,作者對相關議題提出了教學實務反思與建議供自造教育實踐參考。

英文摘要

Science maker education is to drive and integrate science learning through maker activity, so that students can try to solve real-life problems through applying scientific knowledge and manipulating materials and tools. Furthermore, it may lay foundations for cultivating students with 21st century skills. According to theories of creative problem-solving, problem identification is the first but most crucial step in solving problems. Therefore, this study, with an attempt to explore problem identification process of elementary school students in science maker activities, observed and analyzed the group discussions of students to understand their thought process in identifying problems and the strategies applied for developing consensus. The results of the study show that in the science maker activities, students simultaneously identified problems in pursuit of the dual goals of solving real-life problems and solving maker tasks. In the process of problem identification, students' thinking were multi-faceted and potentially conflicting, which could be attributed to the richness of students' prior experience and scientific knowledge, their perceptions of maker tasks being classified as scientific learning, the extent of their attention being attracted to the maker materials, their understanding or interpretation of material properties, as well as their judgment on the hierarchical relationship of the various concepts contained in the theme of maker activity, and so forth. In dealing with their conflicting thinking about problem identification, students kept questioning each other to guide the collective cogitations of the team, made good use of their shared scientific knowledge and/or material manipulation experience in collaborative preparation to improve communication, as well as tried to redeploy materials to concretize the problem situation. All these strategies applied by the students more or less helped reaching group consensus on problem identification. Based on the research findings, pedagogical reflections and suggestions are provided for the enhancement of science maker education.

主题分类 社會科學 > 教育學
参考文献
  1. 王志美, C.-M.,葉貞妮, J.-N.(2020)。動手做自我效能、競賽投入與學習價值之相關分析:以PowerTech青少年科技創作競賽為例。中等教育,71(1),52-73。
    連結:
  2. 王嬿茵, Y.-Y.(2022)。科技實作思考歷程研究:詮釋現象學與滯後序列分析取徑。科學教育學刊,30(1),49-71。
    連結:
  3. 邱甯維, N.-W.,魯盈讌, Y.-Y.,洪瑞兒, Z.-R.,許文怡, W.-Y.(2021)。情境式STEM探究教學提升國小學童STEM參與度、自我效能及探究能力效益。科學教育學刊,29(4),325-350。
    連結:
  4. 張玉山, Y.-S.(2017)。STEAM Maker創客/自造教育的課程思維。中等教育,68(2),8-11。
    連結:
  5. 鄭國明, K.-M.,王仁俊, J.-C.(2017)。國中小學自造教育發展與現況。中等教育,68(2),116-126。
    連結:
  6. Abdulla, A. M.,Paek, S. H.,Cramond, B.,Runco, M. A.(2020).Problem finding and creativity: A meta-analytic review.Psychology of Aesthetics, Creativity, and the Arts,14(1),3-14.
  7. Ackermann, E.(2001).Piaget’s constructivism, papert’s constructionism: What’s the difference?.Future of Learning Group Publication,5(3),Article 438.
  8. Bardwell, L. V.(1991).Problem-framing: A perspective on environmental problem-solving.Environmental Management,15(5),603-612.
  9. Bullock, S. M.,Sator, A. J.(2015).Maker pedagogy and science teacher education.Journal of the Canadian Association for Curriculum Studies,13(1),60-87.
  10. Chinn, C. A.,Buckland, L. A.,Samarapungavan, A.(2011).Expanding the dimensions of epistemic cognition: Arguments from philosophy and psychology.Educational Psychologist,46(3),141-167.
  11. Cohen, J.,Jones, W. M.,Smith, S.,Calandra, B.(2017).Makification: Towards a framework for leveraging the maker movement in formal education.Journal of Educational Multimedia and Hypermedia,26(3),217-229.
  12. Cook, K. L.,Bush, S. B.(2018).Design thinking in integrated STEAM learning: Surveying the landscape and exploring exemplars in elementary grades.School Science and Mathematics,118(3-4),93-103.
  13. Dougherty, D.(2012).The maker movement.Innovations: Technology, Governance, Globalization,7(3),11-14.
  14. Dym, C. L.,Agogino, A. M.,Eris, O.,Frey, D. D.,Leifer, L. J.(2005).Engineering design thinking, teaching, and learning.Journal of Engineering Education,94(1),103-120.
  15. Faber, C.,Benson, L. C.(2017).Engineering students’ epistemic cognition in the context of problem solving.Journal of Engineering Education,106(4),677-709.
  16. Funke, J.,Fischer, A.,Holt, D. V.(2018).Competencies for complexity: Problem solving in the twenty-first century.Assessment and teaching of 21st century skills: Research and applications
  17. Ge, X.,Law, V.,Huang, K.(2016).Detangling the interrelationships between self-regulation and ill-structured problem solving in problem-based learning.Interdisciplinary Journal of Problem-Based Learning,10(2)
  18. Higgins, E. T.(1996).Knowledge activation: Accessibility, applicability, and salience.Social psychology: Handbook of basic principles
  19. Jonassen, D. H.(2011).Learning to solve problems: A handbook for designing problem-solving learning environments.Routledge.
  20. Kim, J.-N.,Grunig, J. E.(2011).Problem solving and communicative action: A situational theory of problem solving.Journal of Communication,61(1),120-149.
  21. Lemieux, A.,Rowsell, J.(2020).On the relational autonomy of materials: Entanglements in maker literacies research.Literacy,54(3),144-152.
  22. Li, Y.,Schoenfeld, A. H.,diSessa, A. A.,Graesser, A. C.,Benson, L. C.,English, L. D.,Duschl, R. A.(2019).On thinking and STEM education.Journal for STEM Education Research,2(1),1-13.
  23. Marston, M. A.,Mistree, F.,Woodruff, G.(1997).A decision based foundation for systems design: A conceptual exposition.Decision-Based Workshop,Orlando, FL:
  24. Martin, L.(2015).The promise of the maker movement for education.Journal of Pre-College Engineering Education Research,5(1),Article 4.
  25. Mayer, R. E.,Wittrock, M. C.(2006).Problem solving.Handbook of educational psychology
  26. Mumford, M. D.,Mobley, M. I.,Reiter-Palmon, R.,Uhlman, C. E.,Doares, L. M.(1991).Process analytic models of creative capacities.Creativity Research Journal,4(2),91-122.
  27. Next Generation Science Standards Lead States(2013).Next generation science standards: For states, by states.The National Academies Press.
  28. Öztürk, A.(2021).Meeting the challenges of STEM education in K-12 education through design thinking.Design and Technology Education: An International Journal,26(1),70-88.
  29. Partnership for 21st Century Learning. (2019). Framework for 21st century learning definitions. https://reurl.cc/VRmY3b
  30. Priemer, B.,Eilerts, K.,Filler, A.,Pinkwart, N.,Rösken-Winter, B.,Tiemann, R.,Upmeier zu Belzen, A.(2020).A framework to foster problem-solving in STEM and computing education.Research in Science & Technological Education,38(1),105-130.
  31. Quinn, H.,Bell, P.(2013).How designing, making, and playing relate to the learning goals of K-12 science education.Design, make, play: Growing the next generation of STEM innovators
  32. Reiter-Palmon, R.(2009).A dialectic perspective on problem identification and construction.Industrial and Organizational Psychology,2(3),349-352.
  33. Reiter-Palmon, R.,Robinson, E. J.(2009).Problem identification and construction: What do we know, what is the future?.Psychology Faculty Publications,28
  34. Rubenstein, L. D.,Callan, G. L.,Neumeister, K. S.,Ridgley, L. M.(2020).Finding the problem: How students approach problem identification.Thinking Skills and Creativity,35,Article 100635.
  35. Rubenstein, L. D.,Callan, G. L.,Neumeister, K. S.,Ridgley, L. M.,Finch, M. H.(2020).How problem identification strategies influence creativity outcomes.Contemporary Educational Psychology,60,Article 101840.
  36. Saleh, A.,Phillips, T. M.,Hmelo-Silver, C. E.,Glazewski, K. D.,Mott, B. W.,Lester, J. C.(2022).A learning analytics approach towards understanding collaborative inquiry in a problem-based learning environment.British Journal of Educational Technology,53(5),1321-1342.
  37. Sheridan, M. P.,Lemieux, A.,Do Nascimento, A.,Arnseth, H. C.(2020).Intra-active entanglements: What posthuman and new materialist frameworks can offer the learning sciences.British Journal of Educational Technology,51(4),1277-1291.
  38. Slavit, D.,Grace, E.,Lesseig, K.(2021).Student ways of thinking in STEM contexts: A focus on claim making and reasoning.School Science and Mathematics,121(8),466-480.
  39. Sternberg, R. J.(2006).The nature of creativity.Creativity Research Journal,18(1),87-98.
  40. Sternberg, R. J.(Ed.)(1994).Thinking and problem solving.Academic Press.
  41. Sternberg, R. J.,Sternberg, K.(1999).Cognitive psychology.Harcourt Brace.
  42. Taylor, B.(2016).Evaluating the benefit of the maker movement in K-12 stem education.Electronic International Journal of Education, Arts, and Science,2(S),1-22.
  43. United Nations Educational, Scientific, and Cultural Organization(2014).Global citizenship education: Preparing learners for the challenges of the 21st century.
  44. Valente, J. A.,Blikstein, P.(2019).Maker education: Where is the knowledge construction?.Constructivist Foundations,14(3),252-262.
  45. Wieselmann, J. R.,Dare, E. A.,Roehrig, G. H.,Ring-Whalen, E. A.(2021).“There are other ways to help besides using the stuff”: Using activity theory to understand dynamic student participation in small group science, technology, engineering, and mathematics activities.Journal of Research in Science Teaching,58(9),1281-1319.
  46. Wixted, J. T.(Ed.)(2018).Stevens’ handbook of experimental psychology and cognitive neuroscience.Wiley.
  47. Yu, K.-C.,Fan, S.-C.,Lin, K.-Y.(2015).Enhancing student’ problem-solving skills through context-based learning.International Journal of Science and Mathematics Education,13,1377-1401.
  48. Zhong, L.,Xu, X.(2019).Developing real life problem-solving skills through situational design: A pilot study.Educational Technology Research and Development,67,1529-1545.
  49. 朱耀明, Y.-M.(2018)。中小學自造者教育的推動與實踐。教育研究月刊,288,31-41。
  50. 林坤誼, K.-Y.(2018)。臺灣推動自造教育的省思與建議。臺灣教育評論月刊,7(2),6-9。
  51. 林坤誼, K.-Y.(2015)。自造世代與科學教育。科學研習,54(1),2-5。
  52. 張玉山, Y.-S.(2018)。STEAM Maker跨域整合,實踐12年國教。臺灣教育評論月刊,7(2),1-5。
  53. 張國興, K.-H.(2016)。國立成功大學=National Cheng Kung University。
  54. 黃茂在, M.-T.,陳文典, W.-D.(2004)。「問題解決」的能力。科學教育月刊,273,21-41。
  55. 劉明洲, M.-C.(2018)。從C. Anderson的《自造者時代》探討自造者教育的課程實踐。教育研究月刊,288,42-52。
  56. 劉明洲, M.-C.(2016).創客教育的理念與實踐~應該被關注的配套設計.臺灣教育評論月刊,5(1),158-159.
被引用次数
  1. (2024)。2018和2023年民眾參與「自造及科技教育嘉年華」活動對自造與科技教育的認知與滿意度比較研究。科技博物,28(2),5-30。