题名

大數據與人工智慧方法在行為與社會科學的應用趨勢

并列篇名

Applications and Trends of Big-data and AI Methods in Behavioral and Social Sciences

DOI

10.7014/SRMA.2020100002

作者

黃從仁(Tsung-Ren Huang)

关键词

大數據 ; 人工智慧 ; 行為科學 ; 社會科學 ; big data ; artificial intelligence ; behavioral sciences ; social sciences

期刊名称

調查研究-方法與應用

卷期/出版年月

45期(2020 / 10 / 01)

页次

11 - 42

内容语文

繁體中文

中文摘要

2010年代大數據與人工智慧在行為與社會科學的應用趨勢,總結來說是個「見山是山,見山不是山,見山還是山」的歷程。本文回顧過去2010-2019十年之間,主要以小樣本、結構化資料為主的行為與社會科學研究,為何開始擁抱大樣本、非結構化的資料後,又逐漸回歸到細緻的小樣本研究;同時,用來分析資料的統計模型,為何從簡單的解釋性模型逐漸過渡為複雜的預測性模型後,而又轉向解釋性模型?理論上,這些大數據的搜集與分析,將使得研究結論因為樣本多樣性與統計檢定力俱足而能有好的可重現性。實務上,大數據與人工智慧方法對於行為與社會科學的影響卻是將研究從低可重現性提升到高可重現性後,又使其陷入低可重現性的困境。由於這些更迭,文末並討論行為與社會科學研究者在面對這些大數據與人工智慧的變革與衝擊時,該是聞風不動抑或聞風而動?

英文摘要

The digital era fosters the blossoming of research methods that can collect and analyze big data of human behavior for descriptive, correlational, and experimental studies in behavioral and social sciences. More and more studies leverage the internet or smartphones to collect big data and adopt artificial intelligence (AI) methods, such as machine learning, to accurately model the big data. As researchers become more enthusiastic about these new approaches, they also gradually learn the limitations of such big-data and AI methods. Compared to paper-based surveys and laboratory experiments, internet- or smartphone-based approaches of data collection often compromise data quality over quantity because such data collection processes, despite being less constrained by space and time, are also less controlled by researchers. Similarly, compared to traditional statistical models, AI’s algorithm-based approaches of data analysis often compromise model simplicity over accuracy because such data models, in order to capture complex regularities in data, are inevitably complex and hence less explainable. As a result of these relative advantages and disadvantages of big-data and AI methods, the trends of applying them in behavioral and social sciences in the 2010s are, to some extent, circular-the rise of big-data and AI methods leads to a re-appreciation of traditional research methods and subsequent development of hybrid approaches. To elaborate on the circularity, the present article reviews the relevant literature published between 2010 and 2019 from the perspecitves of data collection, data analysis, and study reproducibility. Specifically, in terms of data collection, behavioral and social sciences were grounded in small data, grew an interest in big data for their potential of testing universality of research findings, and then turned back to collect relatively quality-assured small data. In terms of data analysis, behavioral and social scientists developed theories predominantly using explanatory statistical models, being attracted to but at the same time felt perplexed by highly accurate predictive models that were based on machine learning, and then finally found ways of making predictive models explainable. In terms of study reproducibility, although collection and analysis of big data held the promise of improving sample size, sample diversity, and thus the reproducibility of results and inferences in behavioral and social sciences, ironically the study methods themselves were becoming irreproducible because the rapidly evolving cyber environments from which research data were gathered might have irreversibly changed, or the technical threshold of repeating the same analysis was insurmountably high to most researchers in the field. How can behavioral and social scientists respond to the aforementioned changes and impacts brought about by big-data and AI methods? Based on foreseeable scientific and technological trajectories, in the end we conclude that the hurdles of learning and applying the big-data and AI methods will be lowered and thus recommend researchers to integrate both new and old methods, which are, in fact, complementary to each other. These integrated approaches, such as aggregating big data from small studies for machine-learning analysis, will help researchers to see not only the forest but also the trees and ultimately help advance behavioral and social sciences.

主题分类 社會科學 > 社會科學綜合
参考文献
  1. Huang, Tsung-Ren(2019).Understanding Potentially Biased Artificial Agents Powered by Supervised Learning: Perspectives from Cognitive Psychology and Cognitive Neuroscience.Chinese Journal of Psychology,61(3),197-208.
    連結:
  2. Aral, Sinan,Walker, Dylan(2012).Identifying Influential and Susceptible Members of Social Networks.Science,337(6092),337-341.
  3. Arnett, Jeffrey J.(2008).The Neglected 95%: Why American Psychology Needs to Become Less American.American Psychologist,63(7),602-614.
  4. Bainbridge, William Sims(2007).The Scientific Research Potential of Virtual Worlds.Science,317(5837),472-476.
  5. Bond, Robert M.,Fariss, Christopher J.,Jones, Jason J.,Kramer, Adam D. I.,Marlow, Cameron,Settle, Jaime E.,Fowler, James H.(2012).A 61-Million-Person Experiment in Social Influence and Political Mobilization.Nature,489(7415),295-298.
  6. Braun, Henry I.(ed.),Jackson, Douglas N.(ed.),Wiley, David E.(ed.)(2001).The Role of Constructs in Psychological and Educational Measurement.London:Routledge.
  7. Breiman, Leo(2001).Statistical Modeling: The Two Cultures.Statistical Science,16(3),199-231.
  8. Bucher, Taina(2012).Want to Be on the Top? Algorithmic Power and the Threat of Invisibility on Facebook.New Media & Society,14(7),1164-1180.
  9. Buhrmester, Michael,Kwang, Tracy,Gosling, Samuel D.(2011).Amazon’s Mechanical Turk: A New Source of Inexpensive, Yet High-Quality Data?.Perspectives on Psychological Science,6(1),3-5.
  10. Button, Katherine S.,Ioannidis, John P. A.,Mokrysz, Claire,Nosek, Brian A.,Flint, Jonathan,Robinson, Emma S. J.,Munafò, Marcus R.(2013).Power Failure: Why Small Sample Size Undermines the Reliability of Neuroscience.Nature Reviews Neuroscience,14(5),365-376.
  11. Camerer, Colin F.,Dreber, Anna,Holzmeister, Felix,Ho, Teck-Hua,Huber, Jürgen,Johannesson, Magnus,Kirchler, Michael,Nave, Gideon,Nosek, Brian A.,Pfeiffer, Thomas,Altmejd, Adam,Buttrick, Nick,Chan, Taizan,Chen, Yiling,Forsell, Eskil,Gampa, Anup,Heikensten, Emma,Hummer, Lily,Imai, Taisuke,Isaksson, Siri,Manfredi, Dylan,Rose, Julia,Wagenmakers, EricJan,Wu, Hang(2018).Evaluating the Replicability of Social Science Experiments in Nature and Science between 2010 and 2015.Nature Human Behaviour,2(9),637.
  12. Chen, Chih-Yu,Huang, Tsung-Ren(2019).Christians and Buddhists Are Comparably Happy on Twitter: A Large-Scale Linguistic Analysis of Religious Differences in Social, Cognitive, and Emotional Tendencies.Frontiers in Psychology,10,113.
  13. Choudhury, De,Munmun,Gamon, Michael,Counts, Scott,Horvitz, Eric(2013).Predicting Depression via Social Media.7th International AAAI Conference on Weblogs and Social Media,Cambridge, America:
  14. Christley, Robert M.(2010).Power and Error: Increased Risk of False Positive Results in Underpowered Studies.The Open Epidemiology Journal,3(1),16-19.
  15. Cohen, Adam B.(2009).Many Forms of Culture.American Psychologist,64,194-204.
  16. Crosas, Mercè,King, Gary,Honaker, James,Sweeney, Latanya(2015).Automating Open Science for Big Data.The ANNALS of the American Academy of Political and Social Science,659(1),260-273.
  17. Cybenko, George(1989).Approximations by Superpositions of a Sigmoidal Function.Mathematics of Control, Signals and Systems,2(4),303-314.
  18. Dencik, Lina, 2014, “From Breastfeeding to Politics, Facebook Steps Up Censorship.” In The Conversation, http://theconversation.com/from-breastfeeding-to-politics-facebook-steps-up-censorship– 22098 (Date visited: January 1, 2020).
  19. Diebold, Francis X.(2012).PIER Working PaperPIER Working Paper,未出版
  20. Dufau,Stephane,Duñabeitia, Jon Andoni,Carmen, Moret-Tatay,McGonigal, Aileen,Peeters, David,Alario, F.-Xavier,Balota, David A.,Brysbaert, Marc,Carreiras, Manuel,Ferrand, Ludovic,Ktori, Maria,Perea, Manuel,Rastle, Kathy,Sasburg, Olivier,Yap, Melvin J.,Ziegler, Johannes C.,Grainger, Jonathan(2011).Smart Phone, Smart Science: How the Use of Smartphones Can Revolutionize Research in Cognitive Science.PLoS ONE,6(9),e24974.
  21. Duncan, Laramie E.,Matthew C. Keller(2011).A Critical Review of the First 10 Years of Candidate Gene-By-Environment Interaction Research in Psychiatry.American Journal of Psychiatry,168(10),1041-1049.
  22. Dwyer, Dominic B.,Falkai, Peter,Koutsouleris, Nikolaos(2018).Machine Learning Approaches for Clinical Psychology and Psychiatry.Annual Review of Clinical Psychology,14,91-118.
  23. Foster, Erin D.,Deardorff, Ariel(2017).Open Science Framework (OSF).Journal of the Medical Library Association(JMLA),105(2),203.
  24. Gilpin,Leilani, H.,Bau, David,Yuan, Ben Z.,Bajwa, Ayesha,Specter, Michael,Kagal, Lalana(2018).Explaining Explanations: An Overview of Interpretability of Machine Learning.5th IEEE International Conference on Data Science and Advanced Analytics (DSAA),Turin, Italy:
  25. Ginsberg, Jeremy,Mohebbi, Matthew H.,Patel, Rajan S.,Brammer, Lynnette,Smolinski, Mark S.,Brilliant, Larry(2009).Detecting Influenza Epidemics Using Search Engine Query Data.Nature,457(7232),1012-1014.
  26. Golder, Scott A.,Macy, Michael W.(2011).Diurnal and Seasonal Mood Vary with Work, Sleep, and Daylength Across Diverse Cultures.Science,333(6051),1878-1881.
  27. Goodchild, Michael F.(2013).The Quality of Big (Geo) Data.Dialogues in Human Geography,3(3),280-284.
  28. Gosling, Samuel D.,Mason, Winter(2015).Internet Research in Psychology.Annual Review of Psychology,66,877-902.
  29. Han, Shihui,Northoff, Georg(2008).Culture-Sensitive Neural Substrates of Human Cognition: A Transcultural Neuroimaging Approach.Nature Reviews Neuroscience,9(8),646-654.
  30. Haxby, James V.,Connolly, Andrew C.,Guntupalli, J. Swaroop(2014).Decoding Neural Representational Spaces Using Multivariate Pattern Analysis.Annual Review of Neuro-science,37,435-456.
  31. Henrich, Joseph,Heine, Steven J.,Norenzayan, Ara(2010).Most People Are Not Weird.Nature,466(7302),29.
  32. Henrich, Joseph,Heine, Steven J.,Norenzayan, Ara(2010).The Weirdest People in the World?.Behavioral and Brain Sciences,3(2-3),61-83.
  33. Hofman, Jake M.,Sharma, Amit,Watts, Duncan J.(2017).Prediction and Explanation in Social Systems.Science,355(6324),486-488.
  34. Hornik, Kurt(1991).Approximation Capabilities of Multilayer Feedforward Networks.Neural Networks,4(2),251-257.
  35. Hughes, David John,Rowe, Moss,Batey, Mark,Lee, Andrew(2012).A Tale of Two Sites: Twitter vs. Facebook and the Personality Predictors of Social Media Usage.Computers in Human Behavior,28(2),561-569.
  36. Igor, Zwir,Arnedo, Javier,del Val, Coral,Laura, Pulkki-Råback.Uncovering the Complex Genetics of Human Temperament.Molecular Psychiatry,1-20.
  37. Insel, Thomas R.(2017).Digital Phenotyping: Technology for a New Science of Behavior.JAMA,318(13),1215-1216.
  38. Jackson, Nigel,Lilleker, Darren(2011).Microblogging, Constituency Service and Impression Management: UK MPs and the Use of Twitter.The Journal of Legislative Studies,17(1),86-105.
  39. Joel, Samantha,Eastwick, Paul W.,Finkel, Eli J.(2017).Is Romantic Desire Predictable? Machine Learning Applied to Initial Romantic Attraction.Psychological Science,28(10),1478-1489.
  40. Jones, Chris,Czerniewicz, Laura(2011).Theory in Learning Technology.Research in Learning Technology,19(3),173-177.
  41. Kersting, Kristian,Meyer, Ulrich(2018).From Big Data to Big Artificial Intelligence?: Algorithmic Challenges and Opportunities of Big Data.
  42. Killingsworth, Matthew A.,Gilbert, Daniel T.(2010).A Wandering Mind Is an Unhappy Mind.Science,330(6006),932-932.
  43. King, Gary(2007).An Introduction to the Dataverse Network as an Infrastructure for Data Sharing.Sociological Methods and Research,36,173-199.
  44. Kitchin, Rob,Lauriault, Tracey P.(2015).Small Data in the Era of Big Data.GeoJournal,80(4),463-475.
  45. Kosinski, Michal,Matz, Sandra,Gosling, Samuel D,Popov, Vesselin,Stillwell, David(2015).Facebook as a Research Tool for the Social Sciences: Opportunities, Challenges, Ethical Considerations, and Practical Guidelines.American Psychologist,70(6),543-556.
  46. Kosinski, Michal,Stillwell, David,Graepel, Thore(2013).Private Traits and Attributes Are Predictable from Digital Records of Human Behavior.Proceedings of the National Academy of Sciences,110(15),5802-5805.
  47. Kramer, Adam D. I.,Guillory, Jamie E.,Hancock, Jeffrey T.(2014).Experimental Evidence of Massive-Scale Emotional Contagion Through Social Networks.Proceedings of the National Academy of Sciences,111(24),8788-8790.
  48. Kriegeskorte, Nikolaus(2015).Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.Annual Review of Vision Science,1,417-446.
  49. Krombholz, Katharina,Merkl, Dieter,Weippl, Edgar(2012).Fake Identities in Social Media: A Case Study on the Sustainability of the Facebook Business Model.Journal of Service Science Research,4(2),175-212.
  50. Lazer, David,Baum, Matthew A.,Benkler, Yochai,Berinsky, Adam J.,Greenhill, Kelly M.,Menczer, Filippo,Metzger, Miriam J.,Nyhan, Brendan,Pennycook, Gordon,Rothschild, David,Schudson, Michael,Sloman, Steven A.,Sunstein, Cass R.,Thorson, Emily A.,Watts, Duncan J.,Zittrain, Jonathan L.(2018).The Science of Fake News.The Science of Fake News,359(6380),1094-1096.
  51. Lazer, David,Kennedy, Ryan,King, Gary,Vespignani, Alessandro(2014).The Parable of Google Flu: Traps in Big Data Analysis.Science,343(6176),1203-1205.
  52. Lerman, Kristina(2019).Computational Social Scientist Beware: Simpson’s Paradox in Behavioral Data.Journal of Computational Social Science,1(1),49-58.
  53. Lin, Han,Lin, Qiu(2013).Two Sites, Two Voices: Linguistic Differences Between Facebook Status Updates and Tweets.5th International Conference on Cross-Cultural Design,Las Vegas, America:
  54. Lipton, Zachary C., 2016, “The Mythos of Model Interpretability.” https://arxiv.org/pdf/1606.03490 (Date visited: January 1, 2020).
  55. Lundberg, Scott M.,Lee, Su-In(2017).A Unified Approach to Interpreting Model Predictions.31st Advances in Neural Information Processing Systems,Long Beach, America:
  56. Marco Tulio Ribeiro,Singh, Sameer,Guestrin, Carlos(2016).Why Should I Trust You?: Explaining the Predictions of Any Classifier.22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,San Francisco, America:
  57. Maxwell, Scott E.,Lau, Michael Y.,Howard, George S.(2015).Is Psychology Suffering from a Replication Crisis? What Does ‘Failure to Replicate’ Really Mean?.American Psychologist,70,487-498.
  58. Mayer-Schönberger, Viktor,Cukier, Kenneth(2013).Big Data: A Revolution That Will Transform How We Live, Work, and Think.Boston:Houghton Mifflin Harcourt.
  59. McCambridge, Jim,Witton, John,Elbourne, Diana R.(2014).Systematic Review of the Hawthorne Effect: New Concepts Are Needed to Study Research Participation Effects.Journal of Clinical Epidemiology,67(3),267-277.
  60. Milfont, Taciano L.,Fischer, Ronald(2010).Testing Measurement Invariance Across Groups: Applications in Cross-Cultural Research.International Journal of Psychological Research,3(1),111-130.
  61. Milfont, Taciano L.,Klein, Richard A.(2018).Replication and Reproducibility in CrossCultural Psychology.Journal of Cross-Cultural Psychology,49(5),735-750.
  62. Miller, Geoffrey(2012).The Smartphone Psychology Manifesto.Perspectives on Psychological Science,7(3),221-237.
  63. Minsu, Park,Thom, Jennifer,Mennicken, Sarah,Cramer, Henriette,Macy, Michael(2019).Global Music Streaming Data Reveal Diurnal and Seasonal Patterns of Affective Preference.Nature Human Behaviour,3(3),230-236.
  64. Mondragón, Esther,Alonso, Eduardo,Kokkola, Niklas(2017).Associative Learning Should Go Deep.Trends in Cognitive Sciences,21(11),822-825.
  65. Muchnik, Lev,Aral, Sinan,Taylor, Sean J.(2013).Social Influence Bias: A Randomized Experiment.Science,341(6146),647-651.
  66. Munafò, Marcus R.,Flint, Jonathan(2011).Dissecting the Genetic Architecture of Human Personality.Trends in Cognitive Sciences,15(9),395-400.
  67. Napier, Jaime L.,Jost, John T.(2008).Why Are Conservatives Happier Than Liberals?.Psychological Science,19,565-572.
  68. Nosek, Brian A.,Banaji, Mahzarin R.,Greenwald, Anthony G.(2002).Harvesting Implicit Group Attitudes and Beliefs from a Demonstration Web Site.Group Dynamics: Theory, Research, and Practice,6(1),101-115.
  69. Open Science Collaboration(2015).Estimating the Reproducibility of Psychological Science.Science,349(251),aac4716.
  70. Paolacci, Gabriele,Chandler, Jesse,Ipeirotis, Panagiotis G.(2010).Running Experiments on Amazon Mechanical Turk.Judgment and Decision Making,5(5),411-419.
  71. Pashler, Harold,Harris, Christine R.(2012).Is the Replicability Crisis Overblown? Three Arguments Examined.Perspectives on Psychological Science,7(6),531-536.
  72. Plesser, Hans E.(2018).Reproducibility vs. Replicability: A Brief History of a Confused Terminology.Frontiers in Neuroinformatics,11,76.
  73. Reips, Ulf-Dietrich(2002).Standards for Internet-Based Experimenting.Experimental Psychology,49(4),243-256.
  74. Rob, Voigt,Camp, Nicholas P.,Prabhakaran, Vinodkumar,Hamilton, William L.,Hetey, Rebecca C.,Griffiths, Camilla M.,Jurgens, David,Jurafsky, Dan,Eberhardt, Jennifer L.(2017).Language from Police Body Camera Footage Shows Racial Disparities in Officer Respect.Proceedings of the National Academy of Sciences,114(25),6521-6526.
  75. Roberts, Seth,Pashler, Harold(2000).How Persuasive Is a Good Fit? A Comment on Theory Testing.Psychological Review,107(2),358-367.
  76. Rosenberg, Jenny,Egbert, Nichole(2011).Online Impression Management: Personality Traits and Concerns for Secondary Goals as Predictors of Self-Presentation Tactics on Facebook.Journal of Computer-Mediated Communication,17(1),1-18.
  77. Salganik, Matthew J.,Dodds, Peter Sheridan,Watts, Duncan J.(2006).Experimental Study of Inequality and Unpredictability in an Artificial Cultural Market.Science,311(5762),854-856.
  78. Schmid Mast,Marianne,Daniel, Gatica-Perez,Frauendorfer, Denise,Laurent Nguyen,Choudhury, Tanzeem(2015).Social Sensing for Psychology: Automated Interpersonal Behavior Assessment.Current Directions in Psychological Science,24(2),154-160.
  79. Shmueli, Galit(2010).To Explain or to Predict?.Statistical Science,25(3),289-310.
  80. Smith, D. Brent,Ellingson, Jill E.(2002).Substance Versus Style: A New Look at Social Desirability in Motivating Contexts.Journal of Applied Psychology,87(2),211-219.
  81. Smith, Linda B.,Yu, Chen,Yoshida, Hanak,Fausey, Caitlin M(2015).Contributions of Head-Mounted Cameras to Studying the Visual Environments of Infants and Young Children.Journal of Cognition and Development,16(3),407-419.
  82. Snijders, Chris,Matzat, Uwe,Reips, Ulf-Dietrich(2012).Big Data’: Big Gaps of Knowledge in the Field of Internet Science.International Journal of Internet Science,7(1),1-5.
  83. Subrahmanian, V. S.,Kumar, Srijan(2017).Predicting Human Behavior: The Next Frontiers.Science,355(6324),489-489.
  84. Tong, Frank,Pratte, Michael S.(2012).Decoding Patterns of Human Brain Activity.Annual Review of Psychology,63,483-509.
  85. Vacharkulksemsuk, Tanya,Reit, Emily,Khambatta, Poruz,Eastwick, Paul W.,Finkel,Eli J.,Carney, Dana R.(2016).Dominant, Open Nonverbal Displays Are Attractive at ZeroAcquaintance.Proceedings of the National Academy of Sciences,113(15),4009-4014.
  86. Van de Mortel, Thea F.(2008).Faking It: Social Desirability Response Bias in Self-Report Research.Australian Journal of Advanced Nursing,25(4),40-48.
  87. Van Essen, David C.,Smith, Stephen M.,Barch, Deanna M.,Behrens, Timothy E. J., Yacoub, Essa,Ugurbil, Kamil(2013).The WU-Minn Human Connectome Project: An Overview.NeuroImage,80,62-79.
  88. Vaswani, Ashish,Shazeer, Noam,Parmar, Niki,Uszkoreit, Jakob,Jones, Llion,Gomez, Aidan N.,Kaiser, Lukasz(2017).Attention Is All You Need.32nd Advances in Neural Information Processing Systems (NIPS),Long Beach, America:
  89. Vu, Mai-Anh T.,Adalı, Tülay,Ba, Demba,Buzsáki, György,Carlson, David,Heller, Katherine,Liston, Conor,Rudin, Cynthia,Sohal, Vikaas S.,Widge, Alik S.,Mayberg, Helen S.,Guillermo Sapiro,Dzirasa, Kafui(2018).A Shared Vision for Machine Learning in Neuroscience.Journal of Neuroscience,38(7),1601-1607.
  90. Wang, Yilun,Kosinski, Michal(2018).Deep Neural Networks Are More Accurate Than Humans at Detecting Sexual Orientation from Facial Images.Journal of Personality and Social Psychology,114(2),246-257.
  91. Wen, Dong,Wei, Zhenhao,Zhou, Yanhong,Li, Guolin,Zhang, Xu,Han, Wei(2018).Deep Learning Methods to Process fMRI Data and Their Application in the Diagnosis of Cognitive Impairment: A Brief Overview and Our Opinion.Frontiers in Neuroinformatics,12,23.
  92. Wilson, Robert E.,Gosling, Samuel D.,Graham, Lindsay T.(2012).A Review of Facebook Research in the Social Sciences.Perspectives on Psychological Science,7(3),203-220.
  93. Wojcik, Sean P.,Hovasapian, Arpine,Graham, Jesse,Motyl, Matt,Ditto, Peter H.(2015).Conservatives Report, but Liberals Display, Greater Happiness.Science,347(6227),1243-1246.
  94. Yarkoni, Tal(2012).Psychoinformatics: New Horizons at the Interface of the Psychological and Computing Sciences.Current Directions in Psychological Science,21(6),391-397.
  95. Yarkoni, Tal,Westfall, Jacob(2017).Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning.Perspectives on Psychological Science,12(6),1100-1122.
  96. Zoph, Barret, and Quoc V. Le, 2016, “Neural Architecture Search With Reinforcement Learning.” https://arxiv.org/pdf/1611.01578.pdf (Date visited: January 1, 2020).
被引用次数
  1. 張仁和(2021)。平衡與和諧:自我寧靜系統之特性與機制。本土心理學研究,56,177-243。