题名

從智慧型手機的數位足跡解析人類日常行為:以手機使用、睡眠作息和工時型態為例

并列篇名

Interpretation of Daily Human Behavior via Smartphone Digital Footprints: Examples from Smartphone Use, Sleeping Patterns, and Working Hours

DOI

10.7014/SRMA.2020100003

作者

江庭瑋(Ting-Wei Chiang);陳思宇(Si-Yu Chen);林煜軒(Yu-Hsuan Lin)

关键词

智慧型手機 ; 行動應用程式 ; 生態瞬間評估法 ; 網路心理學 ; 數位表現型 ; smartphone ; mobile applications (apps) ; ecological momentary assessment ; cyberpsychology ; digital phenotyping

期刊名称

調查研究-方法與應用

卷期/出版年月

45期(2020 / 10 / 01)

页次

43 - 71

内容语文

繁體中文

中文摘要

近年來普及全球的智慧型手機,使我們可以透過每天人和手機互動留下的「數位足跡」,更準確、即時、持續地量化日常環境中的個人心理與行為。研究手機的數位足跡將直接從人類行為紀錄的巨量資料獲取珍貴的訊息,催生出「網路心理學」、「心理資訊學」、「數位表現型」等新興研究領域,這是突破傳統研究模式的新進展。本文將回顧數個以智慧型手機被動資料為基礎的行為模式研究,介紹如何收集並分析手機資料以了解人類一天常見的三項行為:使用手機、睡眠與工作。從這些實證應用中,本文綜合整理了手機資料較傳統研究方法的幾項重要優勢:提高受試者留存率,避免時間扭曲效應,以及提升資料的時間解析度。文末並討論手機數位足跡未來發展的潛力與優勢:除了解讀人類心理與行為以外,還可以進行即時、密集、個人化的行為介入與治療。

英文摘要

With the global prevalence of smartphones in recent years, we can now study human behavior and the mind via our daily interactions with smartphones. These data automatically collected by our digital devices are called "digital footprints." They not only provide an objective, real-time, and ecological source of measurement, but also provide insights into human behaviors and mental activities. The digital footprints from smartphones can be seen as a new opportunity for behavioral science and psychological research, for example, in the emerging fields of cyberpsychology, psychoinformatics, and digital phenotyping. This review introduces several studies that have applied time-series smartphone passive data to interpret common human behaviors, focusing on three mobile apps: "Know Addiction" for smartphone use, "Rhythm" for sleep time, and "Staff Hours" for working hours. "Know Addiction" automatically records the timestamps of screen-on, screen-off, notifications, and app usage. First, we defined an 'episode' of smartphone use as the time period from screen-on to the successive screen-off. App-generated parameters reflecting the frequency and duration of smartphone use facilitate the identification of smartphone addiction. Second, we shifted from smartphone-centered analysis to human-centered analysis by distinguishing "proactive use" from "reactive use." Our prior research has shown that the duration of proactive use, defined as the total time of the epochs without any notification within one minute before the screen-on, may be more representative of addictive behavior than the total duration of smartphone use. Third, by applying methods like empirical mode decomposition to identify trends in smartphone use, we are able to observe long-term behavioral patterns. "Rhythm" was designed to identify sleep time based on smartphone behaviors. "Rhythm" also measures changes in sleep patterns and promotes users' awareness of social jetlag between weekdays and weekends. By quantifying long-term circadian rhythm stability, a "digital chronotype" can be delineated. Our previous study has shown that screen time, mainly mediated by bedtime smartphone use, delayed the circadian rhythm, and reduced total sleep time. "Staff Hours" is an app to capture working hours and patterns for medical staff in real-time. This app collects objective GPS location data longitudinally in the background with a power-saving design. Using geofencing technology, combined with self-reported work time information and on-call schedule, this app automatically records the working hours one spends in his or her workplace. "Staff Hours" improves the efficiency of labor inspection, as we can now compare real-time work hours on a large scale. Our prior study revealed that medical staff had longer work hours than non-healthcare professionals, with resident physicians working the longest hours at 60.4 hours per week in hospitals. There are several advantages of using digital footprints from smartphones in behavioral science and psychological research. First, passive data collection solves the problem of recall bias and time distortion, and results in higher user retention and temporal resolution. Moreover, smartphones show potential for immediate interventions and personalized treatments. With the growing emphasis on medical device software nowadays, we envision that mobile apps collecting digital footprints will be widely used in clinical settings and public health.

主题分类 社會科學 > 社會科學綜合
参考文献
  1. Anthes, Emily(2016).Mental Health: There’s an App for That.Nature,532(7597),20-23.
  2. Apple, 2018, “iOS 12 Introduces New Features to Reduce Interruptions and Manage Screen Time.” https://www.apple.com/newsroom/2018/06/ios– 12-introduces-new-features-to-reduce-interruptions-and-manage-screen-time/ (Date visited: September 27, 2019).
  3. Bidargaddi, Niranjan,Musiat, Peter,Mäkinen, Ville-Petteri,Ermes, Miikka,Schrader, Geoffrey,Licinio, Julio(2017).Digital Footprints: Facilitating Large-scale Environmental Psychiatric Research in Naturalistic Settings through Data from Everyday Technologies.Molecular Psychiatry,22(2),164-169.
  4. Blumenstock, Joshua,Cadamuro, Gabriel,On, Robert(2015).Predicting Poverty and Wealth from Mobile Phone Metadata.Science,350(6264),1073-1076.
  5. Chen, Ching-Yen,Lin, Sheng-Hsuan,Li, Peng,Huang, Wei-Lieh,Lin, Yu-Hsuan(2015).The Role of the Harm Avoidance Personality in Depression and Anxiety during the Medical Internship.Medicine,94(2),e389.
  6. Chiang, Ting-Wei,Chen, Si-Yu,Pan, Yuan-Chien,Lin, Yu-Hsuan(2020).Automatic Workhours Recorder for Medical Staff (Staff Hours): Mobile App Development.JMIR mHealth and uHealth,8(2),e16063.
  7. ComScore, 2017, “The 2017 U.S. Mobile App Report.” https://www.comscore.com/Insights/ (Date visited: September 05, 2019).
  8. Dagum, Paul(2018).Digital Biomarkers of Cognitive Function.npj Digital Medicine,1(1),10.
  9. Depner, Christopher M.,Melanson, Edward L.,Eckel, Robert H.,Snell-Bergeon, Janet K.,Perreault, Leigh,Bergman, Bryran C.,Higgins, Janine A.,Guerin, Molly K.,Stothard, Ellen R.,Morton, Sarah J.,Wright, Kenneth P., Jr(2019).Ad Libitum Weekend Recovery Sleep Fails to Prevent Metabolic Dysregulation during a Repeating Pattern of Insufficient Sleep and Weekend Recovery Sleep.Current Biology,29(6),957-967.
  10. Free, Caroline,Knight, Rosemary,Robertson, Steven,Whittaker, Robyn,Edwards, Phil,Zhou, Weiei,Rodgers, Anthony,Cairns, John,Kenward, Michael G.,Roberts, Ian(2011).Smoking Cessation Support Delivered via Mobile Phone Text Messaging (txt2stop): A Single-blind, Randomised Trial.Lancet,378(9785),49-55.
  11. Gustafson, David H.,McTavish, Fiona M.,Chih, Ming-Yuan,Atwood, Amy K.,Johnson, Roberta A.,Boyle, Michael G.,Levy, Michael S.,Driscoll, Hilary,Chisholm, Steven M.,Dillenburg, Lisa,Isham, Andrew,Shah, Dhavan(2014).A Smartphone Application to Support Recovery from Alcoholism: A Randomized Clinical Trial.JAMA Psychiatry,71(5),566-572.
  12. Harari, Gabriella. M,Lane, Nicholas D.,Wang, Rui,Crosier, Benjamin S.,Campbell, Andrew T.,Gosling, Samuel D.(2016).Using Smartphones to Collect Behavioral Data in Psychological Science: Opportunities, Practical Considerations, and Challenges.Perspectives on Psychological Science,11(6),838-854.
  13. Holst, Arne, 2019, “Number of Smartphone Users Worldwide from 2016 to 2021 (in billions).” https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (Date visited: September 27, 2019).
  14. Insel, Thomas R.(2017).Digital Phenotyping: Technology for a New Science of Behavior.JAMA,318(13),1215-1216.
  15. Insel, Thomas R.(2018).Digital Phenotyping: A Global Tool for Psychiatry.World Psychiatry,17(3),276.
  16. Mary Ann Liebert, 2019, “Cyberpsychology, Behavior, and Social Networking Aims & Scope.” https://home.liebertpub.com/publications/cyberpsychology-behavior-brand-social-networking/10/overview (Date visited: September 27, 2019).
  17. Lin, Yu-Hsuan,Chen, Ching-Yen,Li, Peng,Lin, Sheng-Hsuan(2013).A Dimensional Approach to the Phantom Vibration and Ringing Syndrome during Medical Internship.Journal of Psychiatric Research,47(9),1254-1258.
  18. Lin, Yu-Hsuan,Chen, Ching-Yen,Lin, Sheng-Hsuan,Liu, Chun-Hao,Weng, Wei-Hung,Kuo, Terry B.,Yang, Cheryl C.(2013).Gender Differences in Cardiac Autonomic Modulation during Medical Internship.Psychophysiology,50(6),521-527.
  19. Lin, Yu-Hsuan,Chen, Hui-Yi,Tsai, Shih-Li,Chang, Li-Ren,Chen, Pau-Chung(2019).A Prospective Study of the Factors Associated with Life Quality during Medical Internship.PloS ONE,14(8),e0220608.
  20. Lin, Yu-Hsuan,Ho, Yen-Cheng,Lin, Sheng-Hsuan,Yeh, Yao-Hsien,Liu, Chia-Yih,Kuo, Terry B.,Yang, Cheryl C.,Yang, Albert C.(2013).On-call Duty Effects on Sleep-state Physiological Stability in Male Medical Interns.PLoS ONE,8(6),e65072.
  21. Lin, Yu-Hsuan,Kuo, Terry B,Ho, Yen-Cheng,Lin, Sheng-Hsuan,Liu, Chia-Yih,Yang, Cheryl C.(2012).Physiological and Psychological Impacts on Male Medical Interns during on-call Duty.Stress,15(1),21-30.
  22. Lin, Yu-Hsuan,Lin, Po-Hsien,Chang, Li-Ren,Lee, Yang-Han,Yang, Cheryl C.H.,Kuo, Terry B.J.,Lin, Sheng-Hsuan(2017).Incorporation of Mobile Application (App) Measures Into the Diagnosis of Smartphone Addiction.Journal of Clinical Psychiatry,78(7),866-872.
  23. Lin, Yu-Hsuan,Lin, Sheng-Hsuan,Li, Peng,Huang, Wei-Lieh,Chen, Ching-Yen(2013).Prevalent Hallucinations during Medical Internships: Phantom Vibration and Ringing Syndromes.PloS ONE,8(6),e65152.
  24. Lin, Yu-Hsuan,Lin, Yu-Cheng,Lee, Yang-Han,Lin, Po-Hsien,Lin, Sheng-Hsuan,Chang, Li-Ren,Tseng, Hsien-Wei,Yen, Liang-Yu,Yang, Cheryl C.,Kuo, Terry B.(2015).Time Distortion Associated with Smartphone Addiction: Identifying Smartphone Addiction via a Mobile Application (App).Journal of Psychiatry Research,65,139-145.
  25. Lin, Yu-Hsuan,Lin, Yu-Cheng,Lin, Sheng-Hsuan,Lee, Yang-Han,Lin, Po-Hsien,Chiang, Chih-lin,Chang, Li-Ren,Yang, Cheryl C.,Kuo, Terry B.(2017).To Use or Not to Use? Com- pulsive Behavior and Its Role in Smartphone Addiction.Translational Psychiatry,7(2),e1030.
  26. Lin, Yu-Hsuan,Wong, Bo-Yu,Lin, Sheng-Hsuan,Chiu, Yu-Chuan,Pan, Yuan-Chien,Lee, YangHan(2019).Development of a Mobile Application (App) to Delineate.Digital Chronotype” and the Effects of Delayed Chronotype by Bedtime Smartphone UseJournal of Psychiatry Research,110,9-15.
  27. Lin, Yu-Hsuan,Wong, Bo-Yu,Pan, Yuan-Chien,Chiu, Yu-Chuan,Lee, Yang-Han(2019).Validation of the Mobile App-Recorded Circadian Rhythm by a Digital Footprint.JMIR mHealth and uHealth,7(5),e13421.
  28. Liu, Chun-Hao,Tang, Woung-Ru,Weng, Wei-Hung,Lin, Yu-Hsuan,Chen, Ching-Yen(2016).The Process of Coping with Stress by Taiwanese Medical Interns: A Qualitative Study.BMC Medical Education,16(1),10.
  29. Markowetz, Alexander,Błaszkiewicz, Konrad,Montag, Christian,Switala, Christina,Schlaepfer, Thomas E.(2014).Psycho-informatics: Big Data Shaping Modern Psychometrics.Medical Hypotheses,82(4),405-411.
  30. Merikangas, Kathleen R.,Swendsen, Joel,Hickie, Ian B.,Cui, Lihong,Shou, Haochang,Merikangas, Alison K.,Zhang, Jihui,Lamers, Femke,Crainiceanu, Ciprian,Volkow, Nora D.,Zipunnikov, Vadim(2019).Real-time Mobile Monitoring of the Dynamic Associations Among Motor Activity, Energy, Mood, and Sleep in Adults With Bipolar Disorder.JAMA Psychiatry,76(2),190-198.
  31. Montag, Christian,Blaszkiewicz, Konrad,Lachmann, Bernd,Sariyska, Rayna,Andone, Ionut,Trendafilov, Boris,Markowetz, Alexander(2015).Recorded Behavior as a Valuable Resource for Diagnostics in Mobile Phone Addiction: Evidence from Psychoinformatics.Behavioral Sciences,5(4),434-442.
  32. Montag, Christian,Duke, Éilish,Markowetz, Alexander(2016).Toward Psychoinformatics: Computer Science Meets Psychology.Computational and Mathematical Methods in Medicine,2016,2983685.
  33. Owen, Jason E.,Jaworski, Beth K.,Kuhn, Eric,Makin-Byrd, Kerry N.,Ramsey, Kelly M.,Hoffman, Julia E.(2015).mHealth in the Wild: Using Novel Data to Examine the Reach, Use, and Impact of PTSD Coach.JMIR Mental Health,2(1),e7.
  34. Pan, Yuan-Chien,Lin, Hsiao-Han,Chiu, Yu-Chuan,Lin, Sheng-Hsuan,Lin, Yu-Hsuan(2019).Temporal Stability of Smartphone Use Data: Determining Fundamental Time Unit and Independent Cycle.JMIR mHealth and uHealth,7(3),e12171.
  35. Riva, Giuseppe,Galimberti, Carlo(2001).Towards Cyberpsychology: Mind, Cognition, and Society in the Internet Age.Amsterdam:IOS Press.
  36. Roenneberg, Till,Allebrandt, Karla V.,Merrow, Martha,Vetter, Céline(2012).Social Jetlag and Obesity.Current Biology,22(10),939-943.
  37. Torous, John,Kiang, Mathew V.,Lorme, Jeanette,Onnela, Jukka-Pekka(2016).New Tools for New Research in Psychiatry: A Scalable and Customizable Platform to Empower Data Driven Smartphone Research.JMIR Mental Health,3(2),e16.
  38. Torous, John,Staples, Patrick,Shanahan, Meghan,Lin, Charlie,Peck, Pamela,Keshavan, Matcheri,Onnela, Jukka-Pekka(2015).Utilizing a Personal Smartphone Custom App to Assess the Patient Health Questionnaire–9 (PHQ–9) Depressive Symptoms in Patients with Major Depressive Disorder.JMIR Mental Health,2(1),e8.
  39. Wölfling, Klaus,Müller, Kai W.,Dreier, Michael,Ruckes, Christian,Deuster, Oliver,Batra, Anil,Mann, Karl,Musalek, Michael,Schuster, Andreas,Lemenager, Tagrid,Hanke, Sara,Beutel, Manfred E.(2019).Efficacy of Short-term Treatment of Internet and Computer Game Addiction: A Randomized Clinical Trial.JAMA Psychiatry,76(10),1018-1025.
  40. Young, Kimberly S.(1998).Caught in the Net: How to Recognize the Signs of Internet Addiction—and a Winning Strategy for Recovery.New York:John Wiley & Sons.
  41. 國家衛生研究院網路心理與數位行為研究室,2019,行醫記錄器×血汗地圖(https://working-recorder.nhri.org.tw/index.php,取用日期 2019 年 9 月 30 日)。(Cyberpsychology & Digital Behavior Laboratory, National Health Research Institutes, 2019, “Real-time Analysis of Staff Hours.” https://working-recorder.nhri.org.tw/index.php(Date visited: September 30, 2019.))
被引用次数
  1. (2024)。開發「三件好事」手機行動應用程式與使用歷程分析。教育科學研究期刊,69(2),209-242。