题名

開發線上新型冠狀病毒防疫供需儀表板

并列篇名

Development of Web-Based Dashboards for Demand and Capacity During COVID-19 Pandemic

DOI

10.6320/FJM.202111_25(6).0012

作者

林慧姬(Hui-Chi Lin);黃淑慈(Shu-Tzu Huang);黃筱芳(Hsiao-Fang Huang);郭律成(Lu-Cheng Kuo);盤松青(Sung-Ching Pan);陳宜君(Yee-Chun Chen);陳信希(Hsin-Hsi Chen);高嘉宏(Jia-Horng Kao)

关键词

新冠肺炎(COVID-19) ; 感染預防和管制 ; 醫療量能 ; 即時監測 ; COVID-19 ; infection prevention and control ; healthcare capacity ; real-time monitoring

期刊名称

台灣醫學

卷期/出版年月

25卷6期(2021 / 11 / 25)

页次

806 - 814

内容语文

繁體中文

中文摘要

台灣北部一2,600床教學醫院,在2020年1月23日成立COVID-19疫情指揮中心,負責人主持每日簡報會,有效地制定了跨部門政策。本研究團隊開發線上的COVID-19儀表板,為醫療管理提供視覺化和即時更新的數據,以精準迅速掌握疫情/醫療量能,適時機動地因應。本研究描述系統的開發架構,設計可供使用者點選,即時呈現圖表、數據的儀表板。每日午夜、每小時透過線上醫療資訊系統、實驗室資訊系統資料庫相互連結,將防疫相關的重要訊息,即時更新在院內網路的商業軟體儀表板,供疫情主管決策參考;包括SARS CoV-2 RT-PCR陽性結果的事件病例數、在該院診斷的確診病例數以及從其他醫院或社區隔離轉診的病例數、採取COVID-19隔離預防措施的病例數,專責病房或重症加護病房的床位數量,患有COVID-19的醫護人員數量,COVID-19相關的檢驗數量,以及社區監測警訊指標等。藉由實測各主題資料人工作業彙算和使用系統自動產生數據所花費時間,人工彙算所有項目每次需8.4小時方能完成,而系統最多只需要16分鐘點選和資料載入。疫情高峰期經常需要更新數據,人工作業根本不足以應付實際需求。另外,監測社區持續性指標,透過要因分析有效率地進行plan-do-check-act(PDCA)循環式品質改善措施,以確保達成目標。並在臨床端電子白板進行病人提醒註記,協助同仁能清楚病人分布及其隔離防護等級。運用資訊優勢,藉由精準快速、穩定一致、全方位的監測系統,事半功倍地爭取到更多時間,使感染管制在因應疫情、品質改善活動上有更多著力,間接提昇醫療品質與病人就醫的安全。

英文摘要

The Incident Command Center for COVID-19 pandemic has established since January 23, 2020 at this 2600-bed teaching hospital in Northern Taiwan. Superintendent chaired daily briefing and multidisciplinary or cross sector policies were made efficiently. This study aimed to develop web-based COVID-19 dashboards which report data visually and dynamically for healthcare system management. This article described the development framework of this information system, the design of the actionable layout for data presentation and evaluation of performance. Data were extracted automatically from web-based health information system and laboratory information system in the midnight at the development stage and later, renewed hourly during the peak of the epidemic. Data included number of incident cases with positive results of SARS CoV-2 RT-PCR and antigen assay, number of confirmed cases diagnosed in this hospital and those referred from other hospitals or community-based quarantine settings, active cases who receive COVID-19-specific isolation precaution, numbers of beds in dedicated wards or ICUs taking care of COVID-19 patients, and number of healthcare personnel with COVID-19. Infection control personnel took 8.4 hours to collect these data and summarize data for the report manually, while it took only 16 minutes by using selection screen in data processing and upload function of this system. Information technology also facilitated collecting mandated indicators for assurance of adequate implementation of SARS CoV-2 testing of this hospital during fall and winter. Indicators were generated efficiently and timely, thus, infection control personnel performed root-cause analysis, provided feedback to physicians, and achieved the target through the Plan-Do-Check-Act (PDCA) cycle. Besides, the notifiable COVID-19 cases were labelled on the web-based dashboard of the ward automatically while they remained in special isolation. Thus, the staff (including cleaning personnel) prepare in advance regarding personal protective equipment and other precaution accordingly before leaving the station and heading to patient unit. In conclusion, information technology facilitates infection prevention and control program to assure patient and occupation safety in the healthcare setting in the context of COVID-19 pandemic.

主题分类 醫藥衛生 > 醫藥衛生綜合
参考文献
  1. Chalfine A, Cauet D, Lin WC, et al. Highly sensitive and efficient computer–assisted system for routine surveillance for surgical site infection. Infect Control Hosp Epidemiol 2006;27:794-801.
    連結:
  2. Steinmann J, Knaust A, Moussa A, et al. Implementation of a novel on-ward computer-assisted surveillance system for device-associated infections in an intensive care unit. Int J Hyg Environ Health 2008;211: 192-9.
    連結:
  3. Hebden JN, Wright MO, Fuss EP, et al. Leveraging surveillance technology to benefit the practice and profession of infection control. Am J Infect Control 2008;36:S7-11.
    連結:
  4. Wright MO, Fisher A, John M, et al. The electronic medical record as a tool for infection surveillance: successful automation of device-days. Am J Infect Control 2009;37: 364-70.
    連結:
  5. Kuo FY, Wen TH. Characterizing diffusion dynamics of disease clustering: A modified space–time DBSCAN (MST-DBSCAN) algorithm. Annals of the American Association of Geographers. 2018;108:1168-86.
    連結:
  6. 黃博強:醫療相關手術傷口感染輔助監測與決策支援系統。臺灣大學生醫電子與資訊學研究所學位論文,2014;1-33.
    連結:
  7. 林慧姬、張馨心、陳明源等:發展線上醫療照護相關泌尿道感染監測系統。台灣醫學 2020;24:690-9.
    連結:
  8. 林慧姬、曾意儒、陳明源等:多重抗藥性菌株資訊自動化監測與應用。感染管制雜誌2013;23;290-9。
    連結:
  9. Tseng YJ, Wu JH, Lin HC, et al. Development and evaluation of a web-based, hospital-wide healthcare-associated bloodstream infection surveillance and classification system. JMIR Med Inform 2015;21:e31.
    連結:
  10. Tseng YJ, Wu JH, Ping XO, et al. A Web-based multidrug-resistant organisms surveillance and outbreak detection system with rule-based classification and clustering. J Med Internet Res 2012;14:e131
    連結:
  11. 林慧姬、張慈惠、周家玉等:運用電子病歷監測醫療照護相關感染的成效。台灣醫學 2020;24:576 - 85.
    連結:
  12. 吳婷婷、曾麗荷、陳淑美等:護理指導衛教資訊管理系統應用品質管理循環之成效探討。榮總護理 2019;36:62-71.
    連結:
  13. 張麗銀、張瑛瑛、彭素貞等:護理品質監測系統之精實資訊流策略與成效。榮總護理 2017;34:289-98.
    連結:
  14. Silva DL, Lima CM, Magalhães VCR, et al. Fungal and bacterial coinfections increase mortality of severely ill COVID-19 patients. J Hosp Infect 2021;113:145-54.
    連結:
  15. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507-13.
    連結:
  16. Ranzani OT, Bastos LS, Gelli JG, et al. Characterisation of the first 250 000 hospital admissions for COVID-19 in Brazil: a retrospective analysis of nationwide data. Lancet Respir Med 2021;15:S2213-600.
    連結:
  17. Zhou P, Liu Z, Chen Y, et al. Bacterial and fungal infections in COVID-19 patients: a matter of concern. Infect Control Hosp Epidemiol 2020;41:1124-5.
    連結:
  18. Tseng YJ, Wu JH, Lin HC, et al. Rule-based healthcare-associated bloodstream infection classification and surveillance system. Stud Health Technol Inform 2013;186:145-9.