题名

抗骨吸收藥物對植牙的影響

并列篇名

The Effects of Anti-Resorptive Agents on Dental Implant Therapy

DOI

10.6320/FJM.202203_26(2).0006

作者

魏鈴穎(Ling-Ying Wei);陳信妤(Hsin-Yu Chen);鄭宜文(Yi-Wen Cheng);李正喆(Jang-Jaer Lee)

关键词

骨質疏鬆症 ; 癌症 ; 骨轉移 ; 藥物相關顎骨壞死 ; 雙磷酸鹽類藥物 ; RANKL抑制劑 ; 人工植牙 ; osteoporosis ; cancer ; bone metastasis ; MRONJ ; bisphosphonates ; RANKL inhibitor ; dental implantation

期刊名称

台灣醫學

卷期/出版年月

26卷2期(2022 / 03 / 25)

页次

171 - 181

内容语文

繁體中文

中文摘要

由於可以有效抑制破骨細胞的活性,雙磷酸鹽類及單株抗體製劑如RANKL抑制劑等抗骨吸收藥物,常使用於骨質疏鬆症、癌症產生骨轉移或多發性骨髓瘤之治療。因抗骨吸收藥物會影響骨頭之新陳代謝,一旦顎骨產生傷口,可能會引起癒合不良而形成顎骨壞死的現象,稱之為藥物相關顎骨壞死(medication-related osteonecrosis of the jaws,MRONJ)。隨著植牙技術的進步與高齡化社會的到來,愈來愈多的高齡骨質疏鬆症患者接受植牙補綴的治療;另一方面,現代社會癌症合併骨頭轉移的發生率節節高升,受惠於癌症治療的進展,這些癌症患者的存活期大幅增長,難免也會面對植牙的決定,以增進生活品質,而以上這兩類患者常會使用抗骨吸收藥物治療。由於植牙手術是產生顎骨傷口的重要途徑之一,又屬高單價的治療項目,為了避免上述顎骨壞死後遺症及醫療糾紛的產生,了解抗骨吸收藥物可能對植牙產生的影響是非常的重要。抗骨吸收藥物使用,對於植牙可能產生早發性或遲發性顎骨壞死的現象。對於正在使用抗骨吸收藥物的患者植牙,短期影響可能是無法達到骨整合,植體失敗喪失,嚴重者甚至產生顎骨壞死現象。即使手術成功,己產生骨整合,甚至己補綴完成開始咬合的植體,在長期使用下,可能因受力不當或因為藥物(特別是雙磷酸鹽類)對植體周圍軟組織的毒性,會讓植體周圍骨對口腔細菌之抵抗力降低,使得植體周圍炎發生機率增加,可能導致進一步顎骨壞死現象產生。雖然植牙手術有可能引起顎骨壞死,許多的研究報告認為使用抗骨吸收藥物,並不一定會影響植牙手術之骨整合及成功率。總結而言,對於臨床醫師,只要能術前仔細的評估,排除具高風險因子的患者,對於骨質疏鬆症使用抗骨吸收藥物患者並非不能植牙,但對癌症產生骨轉移正在使用高劑量抗骨吸收藥物患者,由於產生顎骨壞死的機率高很多,因此不建議進行植牙治療。

英文摘要

Anti-resorptive agents, such as bisphosphonates or denosumab, a monoclonal antibody to receptor activator of nuclear factor-κB ligand (RANKL), that potently inhibit osteoclast-mediated bone resorption are commonly used in patients with osteoporosis, cancer with bone metastasis or multiple myeloma. The alteration of bone turnover and remodeling by antiresorptive agents impair wound healing of jaw bones, and potentially result in an adverse event which was termed medication-related osteonecrosis of the jaws (MRONJ). In our aging society, dental implantations are required by more and more elderly osteoporotic patients for improving their chewing function. Also, improving survival period of metastatic cancer patients increases the demand of dental implantations during their life time. Because implant surgery is one of the leading risk factors of MRONJ, how prevent the risk of MRONJ among those patients with anti-resorptive therapy is an important issue, Better understanding of the effects of antiresorptive agents on implant surgery will not only reduce the incidence of side effects, but also the emergence of medical legal problems. The effects of antiresorptive agents on implant therapy include both early and late phases. In the early phase, the failure of osseointegration and loss of implants may happen. Furthermore, the surgical procedures may lead to osteonecrosis. In the late phase, soft tissue toxicity of antiresorptive agents, especially bisphosphonates, may induce microbial attacks to soft tissue around osscointegrated implants, and result in perimplantitis and MRONJ. However, this is a controversial issue that some other researchers found that antiresorptive agents do not compromise osseointegration and success rate of implant therapy. In conclusion, for osteoporotic patients under anti-resorptive therapy, implant therapy is feasible based on cautious preoperative evaluation and case selection. In contrary, metastatic cancer patients using high dose anti-resorptive agents should be considered as high-risk patients for MRONJ, and therefore implant therapy is not a suggested treatment option for dental reconstruction.

主题分类 醫藥衛生 > 醫藥衛生綜合
参考文献
  1. Abuhussein H, Pagni G, Rebaudi A, et al. The effect of thread pattern upon implant osseointegration. Clin Oral Implants Res 2010;21:129-36.
    連結:
  2. Albrektsson T, Brånemark PI, Hansson HA, et al. Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52:155-70.
    連結:
  3. Terheyden H, Lang NP, Bierbaum S, et al. Osseointegration--communication of cells. Clin Oral Implants Res 2012;23:1127-35.
    連結:
  4. Suzuki S, Kobayashi H, Ogawa T. Implant stability change and osseointegration speed of immediately loaded photofunctionalized implants. Implant Dent 2013;22:481-90.
    連結:
  5. Junker R, Dimakis A, Thoneick M, et al. Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res 2009;20:185-206.
    連結:
  6. Ballo AM, Omar O, Xia W, et al. Dental implant surfaces-physicochemical properties, biological performance, and trends. Implant Dent-A Rapidly Evolving Practice 2011;1:19-56.
    連結:
  7. Buser D, Janner SF, Wittneben JG, et al. 10‐year survival and success rates of 511 titanium implants with a sandblasted and acid‐etched surface: a retrospective study in 303 partially edentulous patients. Clin Implant Dent Relat Res 2012;14:839-51.
    連結:
  8. Fischer K, Stenberg T. Prospective 10‐year cohort study based on a randomized controlled trial (RCT) on implant‐supported full‐arch maxillary prostheses. Part 1: sandblasted and acid‐etched implants and mucosal tissue. Clin Implant Dent Relat Res 2012;14:808-15.
    連結:
  9. Schwarz F, Herten M, Sager M, et al. Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA® titanium implants: preliminary results of a pilot study in dogs. Clin Oral Implant Res 2007; 18:481-8.
    連結:
  10. Buser D, Broggini N, Wieland M, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dental Res 2004;83:529-33.
    連結:
  11. Hanawa T. Metal ion release from metal implants. Materials Science and Engineering: C. 2004;24:745-52.
    連結:
  12. Guida L, Oliva A, Basile MA, et al. Human gingival fibroblast functions are stimulated by oxidized nano-structured titanium surfaces. J Dent 2013;41:900-7.
    連結:
  13. Degidi M, Nardi D, Piattelli A. 10‐year follow‐up of immediately loaded implants with TiUnite porous anodized surface. Clin Implant Dent Relat Res 2012;14:828-38.
    連結:
  14. Jarmar T, Palmquist A, Brånemark R, et al. Characterization of the surface properties of commercially available dental implants using scanning electron microscopy, focused ion beam, and high‐resolution transmission electron microscopy. Clin Implant Dent Relat Res 2008;10:11-22.
    連結:
  15. Mertens C, Steveling HG. Early and immediate loading of titanium implants with fluoride‐modified surfaces: results of 5‐year prospective study. Clin Oral Implants Res 2011;22:1354-60.
    連結:
  16. Smeets R, Stadlinger B, Schwarz F, et al. Impact of dental implant surface modifications on osseointegration. Biomed Res Int 2016;2016: 6285620.
    連結:
  17. Bonfante EA, Granato R, Marin C, et al. Biomechanical testing of microblasted, acid-etched/microblasted, anodized, and discrete crystalline deposition surfaces: an experimental study in beagle dogs. Int J Oral Maxillofac Implants 2013;28:136-42.
    連結:
  18. Östman PO, Wennerberg A, Ekestubbe A, et al. Immediate occlusal loading of NanoTite™ tapered implants: a prospective 1‐year clinical and radiographic study. Clin Implant Dent Relat Res 2013;15:809-18.
    連結:
  19. Guarnieri R, Grande M, Ippoliti S, et al. Influence of a laser-lok surface on immediate functional loading of implants in single-tooth replacement: Three-year results of a prospective randomized clinical study on soft tissue response and esthetics. Int J Periodontics Restorative Dent 2015;35:865-75.
    連結:
  20. Artzi Z, Carmeli G, Kozlovsky A. A distinguishable observation between survival and success rate outcome of hydroxyapatite‐coated implants in 5–10 years in function. Clin Oral Implants Res 2006;17:85-93.
    連結:
  21. Att W, Hori N, Takeuchi M, et al. Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials. Biomaterials 2009;30:5352-63.
    連結:
  22. Hirota M, Ozawa T, Iwai T, et al. Effect of photofunctionalization on early implant failure. Int J Oral Maxillofac Implants 2018;33:1098-102.
    連結:
  23. Stephansson SN, Byers BA, Garcı́a AJ. Enhanced expression of the osteoblastic phenotype on substrates that modulate fibronectin conformation and integrin receptor binding. Biomaterials 2002;23:2527-34.
    連結:
  24. Ryu JJ, Park K, Kim HS, et al. Effects of anodized titanium with Arg-Gly-Asp (RGD) peptide immobilized via chemical grafting or physical adsorption on bone cell adhesion and differentiation. Int J Oral Maxillofac Implants 2013;28:963-72.
    連結:
  25. Ellingsen JE, Johansson CB, Wennerberg A, et al. Improved retention and bone-to-implant contact with fluoride-modified titanium implants. Int J Oral Maxillofac Implants 2004;19:659-66.
  26. Nevins M, Kim DM, Jun SH, et al. Histologic evidence of a connective tissue attachment to laser microgrooved abutments: a canine study. Int J Periodontics Restorative Dent 2010;30: 245-55.