题名

群眾募資平台動態預測之研究:以Kickstarter平台為例

并列篇名

Research on Dynamic Prediction of Crowdfunding Platform: An Empirical Study of Kickstarter platform

作者

歐宗殷(Tsung-Yin Ou);傅新彬(Hsin-Pin Fu);蘇勁達(Jin-Da Su);林冠宇(Guan-Yu Lin)

关键词

群眾募資 ; 動態預測 ; Kickstarter ; 決策樹 ; 支持向量機 ; 隨機森林 ; Crowdfunding ; Dynamic prediction ; Kickstarter ; Decision Tree ; Support Vector Machine ; Random Forest

期刊名称

科技管理學刊

卷期/出版年月

25卷1期(2020 / 03 / 01)

页次

1 - 32

内容语文

繁體中文

中文摘要

群眾募資是指一個創新的項目透過網路吸引大眾共同參與投資的過程,根據統計資料顯示,群眾募資僅81%可以達到資金目標的20%,其餘19%連目標的20%都達不到。本研究使用C#和Python程式撰寫爬蟲程式,蒐集國際知名Kickstarter群眾募資平台上科技類提案的動態數據,六個月(2019/2/1~2019/7/1)期間,每四個小時蒐集一次資料,然後使用ARIMA、類神經網路、決策樹、支持向量機以及隨機森林建立群眾募資金額動態預測模型,以平均絕對百分比誤差(MAPE)作為預測模型的比較,可提前掌握那些專案較容易達成募資目標。各預測模型結果顯示,使用ARIMA在中高價提案有不錯的準確度,隨機森林在低價提案、中高價提案以及高價提案的表現最佳,而類神經網路則是在中低價提案的預測表現較佳,整體綜合評估仍是以隨機森林的預測表現最好。此一研究成果可以讓群眾募資的投資者對於募資專案的掌握度和可預期程度有所提升,而募資者除了專注於技術開發以及創意發想之外,更應該關注募資專案在平台上的回應以及經營,對於專案的募資成功率將有所提升,而平台經營者可以在網站的功能和服務上進行加值,提供更即時且更精準地提供專案分析和動態訊息服務給投資者和募資者。

英文摘要

Crowdfunding is defined as a project or business process requires investment, and requires a large group of people to provide this investment. In the past few years, this phenomenon has grown exponentially in the index, is seeking ways and means of funding for entrepreneurs and designers. Statistics show that the vast majority of the people have not been successful fund-raising activities, which is only 81% to 20% funding target. Crowdfunding proposal of sorts, in addition to the commodity, content creators, covered the public issues, campaigning, art, invention, design, and scientific research, public disaster reconstruction can initiate fund-raising in fund-raising platform. This study uses C# and Python programs to write web crawlers and collects dynamic data on technology proposals from the world's best-known Kickstarter crowdfunding platform. The data collection period is six months (2019/2/1~2019/7/1). Dynamic data is collected every four hours. After data consolidation and collation, ARIMA, neural network, decision tree, vector support machine, and random forest are used to establish a dynamic prediction model for the amount of funds raised. And the mean absolute percent error (MAPE)of the predicted results is compared as a different prediction model. According to the research results, it can be known in advance that those projects are easier to achieve the goal of fundraising, and the follow-up proposers can put the factors of past fundraising success into their own proposals to improve the success rate of fundraising, and the sponsors can also use This research explores potential innovative commodities and projects, and then invests in the commodity early to develop cooperation and develop markets. Results show that ARIMA model has low prediction error in mid-high price proposal; random forest prediction model has low error in low price proposal, mid-high price proposal and high price proposal; neural network is in the forecast mid-low price proposal. The overall is still the best prediction error random forests than now. The research results can help the investors who raise funds for the masses to improve the mastery and predictability of fundraising projects. In addition to focusing on technology development and creative ideas, fundraisers should pay attention to the response and operation of the fundraising project on the platform, which will improve the project's fundraising success rate. Platform operators can add value to the functions and services of the website, providing project analysis and dynamic information services to investors and fundraisers in a more timely and accurate manner.

主题分类 社會科學 > 管理學
参考文献
  1. 蔡昌憲(2016)。我國股權性質群眾募資之管制發展:從創櫃板到民間募資平台。臺大法學論叢,45(1),249-313。
    連結:
  2. Allison, T. H.,Davis, B. C.,Webb, J. W.,Short, J. C.(2017).Persuasion in crowdfunding: An elaboration likelihood model of crowdfunding performance.Journal of Business Venturing,32(6),707-725.
  3. Belleflamme, P.,Lambert, T.,Schwienbacher, A.(2014).Crowdfunding:Tapping the right crowd.Journal of business venturing,29(5),585-609.
  4. Beugre, C. D.,Das, N.(2013).Limited Capital and New Venture Creation in Emerging Economies: a Model of Crowd-Capitalism.SAM Advanced Management Journal,78(3),21-27.
  5. Bi, S.,Liu, Z.,Usman, K.(2017).The influence of online information on investing decisions of reward-based crowdfunding.Journal of Business Research,71,10-18.
  6. Breiman, L.(2001).Random Forests.Machine Learning,45(1),5-32.
  7. Breiman, L.(2001).Statistical modeling:The two cultures.Statistical science,16(3),199-231.
  8. Breiman, L.,Friedman, J.H.,Olshen, R.A.,Stone, C.I.(1984).Classification and regression Trees.Belmont, CA:Wadsworth.
  9. Bretschneider, U.,Leimeister, J. M.(2017).Not just an ego-trip:Exploring backers’ motivation for funding in incentive-based crowdfunding.The Journal of Strategic Information Systems,26(4),246-260.
  10. Chen, Z.,Wang, H.(2018).Financing from Masses.Singapore:Springer.
  11. Cholakova, M.,Clarysse, B.(2015).Does the Possibility to Make Equity Investments in Crowdfunding Projects Crowd Out Reward–Based Investments?.Entrepreneurship Theory and Practice,39(1),145-172.
  12. Cutler, D. R.,Edwards, T. C., Jr,Beard, K. H.,Cutler, A.,Hess, K. T.,Gibson, J.,Lawler, J. J.(2007).Random forests for classification in ecology.Ecology,88(11),2783-2792.
  13. Etter, V.,Grossglauser, M.,Thiran, P.(2013).Launch hard or go home! Predicting the success of Kickstarter campaigns.Proceedings of the first ACM conference on Online Social Networks (COSN'13)
  14. Fisk, R. P.,Patrício, L.,Ordanini, A.,Miceli, L.,Pizzetti, M.,Parasuraman, A.(2011).Crowd‐funding: transforming customers into investors through innovative service platforms.Journal of service management,22(4),443-470.
  15. Giudici, G., Guerini, M., & Rossi Lamastra, C. (2013), “Why crowdfunding projects can succeed: the role of proponents’ individual and territorial social capital”, Available at SSRN 2255944.
  16. Gomber, P.,Koch, J. A.,Siering, M.(2017).Digital Finance and FinTech: current research and future research directions.Journal of Business Economics,87(5),537-580.
  17. Greenberg, M. D.,Gerber, E. M.(2014).Learning to fail: experiencing public failure online through crowdfunding.Proceedings of the SIGCHI conference on human factors in computing systems
  18. Heminway, J.,Hoffman, S.(2010).Proceed at Your Peril:Crowdfunding and the Securities Act of 1933.Tenn. L. Rev.,78,879.
  19. Ho, T. K.(1998).The random subspace method of constructing and decision forests.IEEE Transaction on Pattern Analysis and Machine Intelligence,20(8),832-844.
  20. Ho, T. K.(1995).Random Decision forest.Proceedings of the 3rd International Conference on Document Analysis and Recognition,Montreal:
  21. Jeffries, A. (2013), “How Kickstarter stole CES:the rise of the indie hardware developer”, The Verge. Retrieved January 12, 2013.
  22. Kim, K.,Viswanathan, S.(2018).The 'Experts' in the Crowd:The Role of Experienced Investors in a Crowdfunding Market.MIS Quarterly,43(2),347-372.
  23. Koch, J. A.,Siering, M.(2015).Crowdfunding success factors: The characteristics of successfully funded projects on crowdfunding platforms.ECIS 2015 Proceedings
  24. Kuppuswamy, V.,Bayus, B. L.(2018).Crowdfunding creative ideas: The dynamics of project backers.The economics of crowdfunding,Cham:
  25. Macht, S. A.,Weatherston, J.(2014).The benefits of online crowdfunding for fund‐seeking business ventures.Strategic Change,23(1?2),1-14.
  26. Miglo, A.,Miglo, V.(2019).Market imperfections and crowdfunding.Small Business Economics,53(1),51-79.
  27. Mollick, E.(2014).The dynamics of crowdfunding:An exploratory study.Journal of Business Venturing,29(1),1-16.
  28. Morduch, J.(1999).The Microfinance Promise.Journal of Economic Literature,37(4),1569-1614.
  29. Poetz, M,Schreier, M.(2012).The value of crowdsourcing:can users really compete with professionals in generating new product ideas?.Journal of Product Innovation Management,29(2),245-256.
  30. Quinlan, J. R.(1986).Induction of decision trees.Machine learning,1(1),81-106.
  31. Quinlan, J. R.(1993).C4.5:Programs for Machine Learning.Machine Learning,16(3),235-240.
  32. Rao, H.,Xu, A.,Yang, X.,Fu, W. T.(2014).Emerging dynamics in crowdfunding campaigns.International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction,Cham:
  33. Rees-Mogg, M.(2013).Crowd funding: How to raise money and make money in the crowd.Crimson.
  34. Schwienbacher, A.,Larralde, B.(2010).Crowdfunding of Small Entrepreneurial Ventures.SSRN Electronic Journal,10,1-23.
  35. Tomczak, A.,Brem, A.(2013).A conceptualized investment model of crowdfunding.Venture Capital,15(4),335-359.
  36. Valanciene, L.,Jegeleviciute, S.(2013).Valuation of crowdfunding: benefits and drawbacks.Economics and Management,18(1),39-48.
  37. Villano, M. (2010), “Small donations in large numbers, with online help”, The New York Times, March, 18.
  38. Wehnert, P.,Baccarella, C. V.,Beckmann, M.(2019).In crowdfunding we trust? Investigating crowdfunding success as a signal for enhancing trust in sustainable product features.Technological Forecasting and Social Change,141,128-137.
  39. Wheat, R. E.,Wang, Y.,Byrnes, J. E.,Ranganathan, J.(2013).Raising money for scientific research through crowdfunding.Trends in ecology & evolution,28(2),71-72.
  40. Xiao, X. C.,Wang, X. Q.,Fu, K. Y.,Zhao, Y. J.(2012).Grey relational analysis on factors of the quality of web service.Physics Procedia,33,1992-1998.
  41. Xu, B.,Zheng, H.,Xu, Y.,Wang, T.(2016).Configurational paths to sponsor satisfaction in crowdfunding.Journal of Business Research,69(2),915-927.
  42. 林雅燕(2014)。新興募資方式—群眾募資行為之初探。經濟研究年刊,14,152-172。
  43. 林瑛珪(2016)。林瑛珪 (2016),「淺談群眾募資及台灣群眾募資發展現況」,證券櫃檯買賣中心。
  44. 陳佑寰(2015)。我們也可以當天使: 股權群募之投資風險與保護機制。會計研究月刊,360,76-82。
被引用次数
  1. 陳悅琴,陳品綺,吳曉君(2021)。捲土重來!募資失敗再上市之意會活動歷程探討。科技管理學刊,26(1),59-90。