题名

應用拔靴法估計誤差修正的企業總要素能源效率:以臺灣食品加工業為例

并列篇名

A study of Biased-corrected TFEE: Evidence from Food Industry

作者

王淑美(Shu-Mei Wang);黃心璇(Hsin-Hsuan Huang)

关键词

總要素能源效率 ; 拔靴法 ; 資料包絡分析法 ; 食品加工業 ; Total Factor Energy Efficiency ; Bootstrap Method ; Data Envelopment Analysis ; Food Industry

期刊名称

科技管理學刊

卷期/出版年月

28卷2期(2023 / 09 / 01)

页次

221 - 241

内容语文

繁體中文;英文

中文摘要

近年來氣候變遷急遽加速,其主因為全球共同排放大量的溫室氣體而使氣溫上升不斷。由於能源不僅為經濟運作的關鍵生產要素,且在生產過程中會排放大量溫室氣體,因此在生產過程中評估並提升能源效率為緩解全球暖化問題及促進永續發展的關鍵之一。以資料包絡分析(data envelopment analysis, DEA)為框架的總要素能源效率(total factor energy efficiency, TFEE)被廣泛應用於衡量能源效率,然而DEA效率值在理論上存在高估的偏誤,故TFEE具有高估能源效率的潛在問題。本研究應用拔靴法估計同時考慮radial及non-radial slacks的誤差修正TFEE,評估臺灣26家上市櫃食品加工業的能源效率,結果顯示,國內食品加工業的能源效率低落,且分群分析也無顯著差異。企業須依照食品加工業特性在模型中加入用水量因子,另透過技術與流程來改善能源效率。企業無可避免地要投入成本於環境治理,而政府則應在頒布政策的同時,給予企業改善能源效率適時的協助或補助。

英文摘要

In recent years, climate change has been accelerating rapidly due to the global emission of a large amount of greenhouse gases, which has caused the temperature rising. Since energy is not only an indispensable key production factor for economic operation, but also exhaust a large amount of greenhouse gases in the production process, how to use energy effectively in the production process is one of the keys to alleviating global warming and promoting sustainable development, and proper measurement of energy efficiency is a necessary for promoting energy efficiency. Total factor energy efficiency (TFEE) based on data envelopment analysis (DEA) is widely used to measure energy efficiency; however, DEA efficiency is theoretically biased towards overestimation, that means TFEE has the potential problem of overestimating energy efficiency. This study used the bootstrap method to estimate the biased-corrected TFEE with radial slacks and non-radial slacks of 26 food industries in Taiwan. The study found that the overall energy efficiency of 26 domestic food industries is relatively low, and there is no significant difference in cluster analysis. According to the characteristics of the food industry, the water consumption factor should be considered in the model or companies must improve energy efficiency through technology and processes. Companies will inevitably invest in environmental governance, and the government should give timely assistance or subsidies to enterprises to improve energy efficiency while promulgating policies.

主题分类 社會科學 > 管理學
参考文献
  1. 金管會(2014),「強制上市(櫃)特定公司編製企業社會責任報告書」,金管會,取自:https://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0,2&mcustomize=news_view.jsp&dataserno=201409180005&toolsflag=Y&dtable=News
  2. Ang, B. W., Mu, A. R., & Zhou, P. (2010), “Accounting frameworks for tracking energy efficiency trends”, Energy Economics, Vol.32, pp.1209-1219.
  3. Bajan, B., Mrówczynska-Kaminska, A., & Poczta, W. (2020), “Economic energy efficiency of food production systems”, Energies, Vol.13, 5826.
  4. Banker, R. D., Charnres, A., & Cooper, W. W. (1984), “Some Models for Estimation of Technical and Scale Inefficiencies in Data Envelopment Analysis”, Management Science, Vol.30, pp.1078-1092.
  5. Banker, R.D. (1993), “Maximum likelihood, consistency and data envelopment analysis: A statistical foundation”, Management Science, Vol.39, pp.1265-1273.
  6. Bhadbhade, N., & Patel, M. K. (2020), “Analysis of energy efficiency improvement and carbon dioxide abatement T potentials for Swiss food and beverage sector”, Resources, Conservation and Recycling, Vol.161, 104967.
  7. Bundschuh, J., Chen, G., & Mushtaq, S. (2014), “Towards a sustainable energy technologies based agriculture”, Sustainable Energy Solutions in Agriculture, Vol. 3, pp.3-15.
  8. Charnes, A., Cooper, W. W., & Rhodes, E. (1978), “Measuring the efficiency of decision-making units”, European Journal of Operational Research, Vol.2, pp.429-444.
  9. Clairand, J. M., Briceño-León, M., Escrivá-Escrivá, G., & Pantaleo, A. M. (2020), “Review of energy efficiency technologies in the foodindustry: Trends, barriers, and opportunities”, Institute of Electrical and Electronics Engineers, Vol.8, pp.48015-48029.
  10. EEA (2015), “The European environment — State and outlook 2015: Synthesis report Copenhagen”, From: Denmark: European Environment Agency (https://www.eea.europa.eu/soer/#pdf-choice-synthesis)
  11. EIA (2020), “Annual energy outlook with projections to 2050”, From: Annual energy outlook with projections to 2050 (https://www.eia.gov/outlooks/aeo/pdf/AEO2020%20Full%20Report.pdf)
  12. Ehrenfeld, J. R. (2005), “Eco-efficiency: Philosophy, theory, and tools”, Journal of Industrial Ecology, Vol.9, pp.6-8.
  13. Fanzo, J., Haddad, L., Schneider, K., Bene, C., Covic, N. M., Guarin, A., Herforth, A. W., Herrero, M., Sumaila, U. R., Aburto, N. J., Amuyunzu-Nyamongo, M., Barquera, S., Battersby, J., Beal, T., Molina, P. B., Brusset, E., Cafiero, C., Campeau, C., Caron, P., …, Moncayo, J. R. (2021). “Viewpoint: Rigorous monitoring is necessary to guide food system transformation in the countdown to the 2030 global goals” Food Policy, Vol.104, 102163.
  14. Fouquet, R. (2011), “Long run trends in energy-related external costs”, Ecological Economics, Vol.70, pp.2380-2389.
  15. Hu, J.-L., & Wang, S.-C. (2006), “Total-factor energy efficiency of regions in China”, Energy Policy, Vol.34, pp.3206-3217.
  16. Hu, J.-L., Lio, M.-C., Yeh, F.-Y., & Lin, C.-H. (2011), “Environment-adjusted regional energy efficiency in Taiwan”, Applied Energy, Vol.88, pp.2893-2899.
  17. Huang, J., Yang, X., Cheng, G., & Wang, S. (2014), “A comprehensive eco-efficiency model and dynamics of regional eco-efficiency in China”, Journal of Cleaner Production, Vol.67, pp.228-238.
  18. IPCC. (2022), “Climate change 2022: Mitigation of climate change”, From: IPCC sixth assessment report (https://www.ipcc.ch/report/ar6/wg3/)
  19. Khan, S., Khan, M. A., Hanjra, M. A., & Mu, J. (2009), “Pathways to reduce the environmental footprints of water and energy inputs in food production”, Food Policy, Vol.34, pp.141-149.
  20. King, A. P., & Eckersley, R. J. (2019), Statistics for Biomedical Engineers and Scientists, 1st ed, Vol.1, Academic Press.
  21. Kuosmanen, T., & Kortelainen, M. (2005), “Measuring eco‐efficiency of production with data envelopment analysis”, Journal of Industrial Ecology, Vol.9(4), pp.59-72.
  22. Ladha-Sabur, A., Bakalis, S., Fryer, P. J., & Lopez-Quiroga, E. (2019), “Mapping energy consumption in food manufacturing”, Trends in Food Science and Technology, Vol.86, pp.270-280.
  23. Li, Y., Liu. A.-C., Wang, S.-M., Zhan, Y., Chen, J., & Hsiao, H.-F. (2022), “A study of total-factor energy efficiency for regional sustainable development in China: An application of bootstrapped DEA and clustering approach”, Energies, Vol.15, 3093.
  24. Ma, C.-M., Chen M.-H., & Hong, G.-B. (2012), “Energy conservation status in Taiwanese food industry”, Energy Policy, Vol.50, pp.458-463.
  25. Maia, R. G. T., & Junior, A. O. P. (2021), “Eco-Efficiency of the food and beverage industry from the perspective of sensitive indicators of the water-energy-food nexus”, Journal of Cleaner Production, Vol.324, 129283.
  26. Nikmaram, N., & Rosentrater, K. A. (2019), “Overview of some recent advances in improving water and energy efficiencies in food processing factories”, Frontiers in Nutrition, Vol.6, 20.
  27. OECD. (1998), “Eco-efficiency”, From: OECD (https://books.google.com.tw/books?id=XdzVAgAAQBAJ&printsec=frontcover&hl=zh-TW&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false)
  28. Olabia, A. G., & Abdelkareema, M. A. (2022), “Renewable energy and climate change”, Renewable and Sustainable Energy Reviews, Vol.158, 112211.
  29. Pagotto, M., & Halog, A. (2015), “Towards a circular economy in Australian agri-food industry”, Journal of Industrial Ecology, Vol.20 (5), pp.1176-1186.
  30. Picazo-Tadeo, A. J., Beltrán-Esteve, M., & Gómez-Limón, J. A. (2012), “Assessing eco-efficiency with directional distance functions”, European Journal of Operational Research, Vol.220, pp.798-809.
  31. Sanwal, M. (2012), “Rio +20, climate change and development: the evolution of sustainable development (1972–2012)”, Climate and Development, Vol.4(2), pp.157-166.
  32. Simar, L., & Wilson, P. W. (1998), “Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models”, Management Science, Vol.44(1), pp.49-61.
  33. Simeonovski, K., Kaftandzieva, T., & Brock, G. (2021), “Energy efficiency management across EU countries: A DEA approach”, Energies, Vol.14, 2619.
  34. Sugden, D., Webb, J., & Kerr, A. (2012), “Climate change, sustainability and the need for a new industrial revolution in Scotland”, Earth and Environmental Science Transactions of the Royal Society of Edinburgh, Vol.103, pp.125-132.
  35. Ucal, M., & Xydis, G. (2020), “Multidirectional relationship between energy resources, climate changes and sustainable development: Technoeconomic analysis”, Sustainable Cities and Society, Vol.60, 102210.
  36. UN. (1972), “Report of the United Nations conference on the human environment”, From: UN (https://www.un.org/en/conferences/environment/stockholm1972)
  37. Wang, K., & Wei, Y.-M. (2014), “China’s regional industrial energy efficiency and carbon emissions abatement costs”, Applied Energy, Vol.130, pp.617-631.
  38. Wei, Y.-M., Liao, H., & Fan, Y. (2007), “An empirical analysis of energy efficiency in China’s iron and steel sector”, Energy, Vol.32, pp.2262-2270.
  39. WEF. (2021), “The Global Risks Report 2021”, WEF Publishing. https://www.weforum.org/reports/the-global-risks-report-2021/
  40. WCED. (1987), “Our Common Future”, WCED Publishing. https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf
  41. Wu, F., Fan, L. W., Zhou, P., & Zhou, D. Q. (2012), “Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis”, Energy Policy, Vol.49, pp.164-172.
  42. Xie, X., & Li, K. (2021), “Measuring total-factor energy environment efficiency, energy-saving and carbon emission-reduction potential in China@@$$s food industry: Based on a meta-frontier slacks-based measure model”, Food and Energy Security, Vol.11, e324.
  43. Zhang, N., Zhou, P., & Kung, C.-C. (2015), “Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis”, Renewable and Sustainable Energy Reviews, Vol.41, pp.584-593.
  44. Zhou, P., Ang, B. W., & Han, J. Y. (2010), “Total factor carbon emission performance: A Malmquist index analysis”, Energy Economics, Vol.32, pp.194-201.