题名

應用Copula函數於組合型認購權證的評價

并列篇名

Copula Function to the Pricing of Basket Stock Call Warrant

DOI

10.29718/TJHSS.201009.0003

作者

李沃牆(Wo-Chiang Lee);黃佳慧(Chia-Hui Huang)

关键词

Copula函數 ; 組合型認購權證 ; CC評價模式 ; copula function ; basket stock call warrant ; CC basket option pricing model

期刊名称

淡江人文社會學刊

卷期/出版年月

43期(2010 / 09 / 01)

页次

49 - 80

内容语文

繁體中文

中文摘要

本研究將Copula函數加入CC評價模式中,並應用於組合型認購權證訂價。Copula方法可處理多變量的聯合機率分配,近年來已被運用在財務和經濟的領域。實證上利用B-S、CC評價模式以及加入6種Copula函數的CC模型,對國內已下市的二標的股票型組合型認購權證,共14檔進行評價,最後透過MAE、RMSE、MAPE、Theil's U指標評估其績效。 研究結果發現CC-Frank-copula-CCC-BiGARCH模型的績效表現最好,其次是CC-Gumbel-copula-CCC-BiGARCH,在所有加入Copula函數模型中,使用ArchimedeanCopula的方法比N-copula或t-copula績效好,而使用Copula函數去衡量資產報酬相關性結構的績效也比CC評價模型和B-S模型績效為佳。資產間的報酬實際上並不會符合特定的分配,使用Copula函數更能配適二資產間的最適相關性結構。

英文摘要

This article is aimed at combining the copula functions with CC basket options pricing model, and applying them to the pricing of basket stock call warrants. The Copula function can deal with multivariate joint marginal probability distribution and has been widely used in economics and finance in recent years. In our empirical study, we selected fourteen Taiwan basket stock call warrants with two underlying stock assets. The models include B-S option pricing model, CC basket option pricing model, and six copula functions based on the CC model. Last, we utilize MAE, RMSE, MAPE and Theil's U as criteria for evaluating. Among pricing models based on the copula, the performance of Archimedean copula models always can outperform N-copula or t-copula models. Besides, the performance of underlying assets correlation structure in copula models is better than CC basket and B-S option pricing models. In fact, the return of assets does not always fit a special distribution, while the copula functions can capture the correlation structure between two assets more precisely.

主题分类 人文學 > 人文學綜合
社會科學 > 社會科學綜合
参考文献
  1. 莊忠柱(2004)。NGARCH組合型權證定價模型的評價與避險績效。管理與系統,11(3),323-337。
    連結:
  2. 廖四郎、李福慶(2005)。擔保債權憑證之評價─Copula分析法。台灣金融財務季刊,6(2),53-84。
    連結:
  3. Bera, A. K.,Roh, J. S.(1991).A moment test of the constancy of the correlation coefficient in the bivariate GARCH Model.Econometric Theory,6,318-334.
  4. Black, F.,Scholes, M.(1973).The pricing of options and corporate liabilities.Journal of Political Economics,81,637-654.
  5. Bollerslev, T.(1986).Generalized autoregressive conditional heteroskedasticity.Journal of Econometrics,31,307-327.
  6. Bollerslev, T.(1990).Modeling the coherence in short-run nominal exchange rates: Multivariate generalized ARCH approach.Review of Economic and Statistics,7,498-505.
  7. Chiou, S. C.,Tsay, R. S.(2008).A copula-based approach to option pricing and risk assessment.Journal of Data Science,6,273-301.
  8. Chu, S. H.,Freund, S.(1996).Volatility estimation for stock index options: A GARCH approach.The Quarterly Review of Economics and Finance,36,431-450.
  9. Cox, J. C.,Ross, S. A.,Rubinstein, M.(1979).Option pricing: A simplified approach.Journal of Financial Economics,7,229-263.
  10. Garman, M. B.,Klass, M. J.(1980).On the estimation of security price volatilities from historical data.Journal of Business,53,67-78.
  11. Hsu, C. C.,Tseng, C. P.,Wang, Y. H.(2008).Dynamic hedging with futures: A copula-based GARCH model.Journal of Futures Markets,28,1095-1116.
  12. Hu, L.(2006).Dependence patterns across financial markets: A mixed copula approach.Applied Financial Economics,16(10),717-729.
  13. Hull, J.,White, A.(1993).Efficient procedures for valuing European and American path-dependent options.Journal of Derivatives,1,21-31.
  14. Joe, H.(1997).Multivariate models and dependence concepts.London:Chapman & Hall.
  15. Kemna, A. G. Z.,Vorst, A. C. F.(1990).A pricing method for options based on average asset values.Journal of Banking and Finance,14,113-129.
  16. Lee,W. C.,Fang. C. J.(2010).The measurement of capital for operational risk of Taiwanese commercial banks.The Journal of Operational Risk,5(2),79-102.
  17. Li, D. X.(2000).On default correlation: a copula function approach.Journal of Fixed Income,6,43-54.
  18. Milevsky, M. A.,Posner, S. E.(1998).A closed-form approximation for valuing basket options.Journal of Derivatives,5,54-61.
  19. Nelsen, R. B.(1999).Introduction to copulas.NY:Springer.
  20. Parkinson, M.(1980).The extreme value method for estimating the variance of the rate of return.Journal of Business,53,61-65.
  21. Rodriguez, J. C.(2007).Measuring financial contagion: A copula approach.Journal of Empirical Finance,14(3),401-423.
  22. Sklar, A.(1959).Fonctions de repartition a n-dimensions etLeurs marges.Publications de l'Institut de Statistique de L'Universite' de Paris,8(229),229-231.
  23. Vorst, T.(1992).Prices and hedge ratios of average exchange rate option.International Review of Financial Analysis,1(3),179-194.
  24. 張峯斌(2004)。國立東華大學國際經濟研究所。
  25. 陳安琪(2006)。國立清華大學資訊工程學系。
  26. 陳松男、鄭翔尹(2000)。組合型權證的正確評價及避險方法。證券市場發展季刊,11(4),1-21。
  27. 黃婉茹(2000)。私立真理大學管理科學研究所。
被引用次数
  1. (2015)。臺灣及兩岸三地之匯率聯動性─以 Copula-GARCH 模型分析。臺灣銀行季刊,66(3),51-84。