题名

智慧醫材臨床應用之法律責任

并列篇名

The Legal Liability of the Clinical Application of Medical Devices Based on Artificial Intelligence

DOI

10.29494/LN.202009_21(3).0001

作者

陳鋕雄(Chih-Hsiung Chen)

关键词

人工智慧 ; 智慧醫材 ; 產品責任 ; 輔助臨床診斷醫療器材 ; 標示瑕疵 ; artificial intelligence ; smart devices ; product liability ; clinical decision-making assisting device ; label defect

期刊名称

領導護理

卷期/出版年月

21卷3期(2020 / 09 / 01)

页次

1 - 15

内容语文

繁體中文

中文摘要

基於人工智慧科技的智慧醫材在近年短期內成為熱門應用領域,逐步進入醫療臨床場域。由於智慧醫材特性與一般醫材之差異,使其使用上的法律責任風險有所差別。本文依兩種分類方式區分智慧醫材。首先是依是否需經政府查驗登記,以及是否需要經過臨床試驗,而區分智慧醫材的法律責任。愈經過臨床試驗及查驗登記的醫材,上市後的產品責任風險較低。但純以軟體為主的醫材,有可能被認定為服務而非產品。其次,本文依使用上是否需要醫護人員介入而區分智慧醫材,說明輔助醫護人員臨床決策的醫材,仍由醫護人員負最終法律責任。而智慧醫材若有瑕疵,由於不容易與其他產品進行比較,不容易成立設計瑕疵,較容易成立的是標示瑕疵。對於新興科技的不完美產生的風險,醫療機構與醫護人員應注意相關的買賣及服務契約條款,以分散或排除相關的法律風險。

英文摘要

Medical devices based on the technology of artificial intelligence have been a hot topic in recent years and have gradually adapted in the medical clinical practice. Because of the different characteristics of these smart devices, the application risks of legal liability are different for these devices. This article divides smart devices by two classification methods. The first one classifies smart devices depending on the requirements of governmental premarket approvals and clinical trials. Devices go through the paths of clinical trials and premarket approval will have less risks of product liability. However, the software-alone devices would be deemed as service rather than products. Second, this article classifies smart devices depending on the intervention of medical personnel in the use of the devices. Medical personnel is responsible for malpractice caused by smart devices that assist medical therapists for decision-making. Smart devices are not easy to be proofed for design defect because of the difficulty to compare with other products. Label defect is easier to be proofed. For the risks caused by the imperfection of innovative technology, medical institutions and healthcare practitioners should pay attention to the clauses of sale or service contracts in order to distribute or exclude the relevant legal risks.

主题分类 醫藥衛生 > 預防保健與衛生學
醫藥衛生 > 社會醫學
参考文献
  1. Mracek v. Bryn Mawr Hosp., 610 F. Supp. 2d 401, 406 (E.D. Pa. 2009)
  2. Alemzadeh, H.,Raman, J.,Leveson, N.,Kalbarczyk, Z.,Iyer, R. K.(2016).Adverse events in robotic surgery: A retrospective study of 14 years of FDA data.Plos One,11(4),1-20.
  3. Anderso, M. (2020, June 5th). FDA classifies intuitive surgical recall as class 2 [Online forum comment]. Retrieved from https://www.beckershospitalreview.com/supply-chain/intuitive-surgical-recalls-robotic-surgery-systems.html.
  4. Arkes, H. R.,Shaffer, V. A.,Medow, M. A.(2008).The influence of a physician’s use of a diagnostic decision aid on the malpractice verdicts of mock jurors.Medical Decision Making,28(2),201-208.
  5. Bioethics Briefing Note.(2020, August 16)Artificial Intelligence (AI) in healthcare and research,Nuffield Council on Bioethics. [Online forum comment]. Retrieved from https://www.nuffieldbioethics.org/assets/pdfs/Artificial-Intelligence-AI-in-healthcare-and-research.pdf
  6. Borghetti, J. S.(2019).How can Artificial Intelligence be defective?.Liability for Artificial Intelligence and the Internet of Things,Baden-Baden, Germany:
  7. Cohen, I. G.(Ed.)(2018).Big Data, Health Law, and Bioethics.New York, N.Y.:Cambridge University.
  8. Cohen, J. K. (2017, Oct. 9). STAT: Will the FDA oversee AI decision support like Watson? 5 things to know. [Online forum comment]. Retrieved from https://www.beckershospitalreview.com/artificial-intelligence/stat-will-the-fda-oversee-ai-decision-support-like-watson-5-things-to-know.html
  9. Compton, K. (2019, May 15). da Vinci Robotic Surgery Lawsuits. Drugwatch. Retrieved from: https://www.drugwatch.com/davinci-surgery/lawsuits/.
  10. Food and Drug Administration. (2016. Oct. 26). Class 2 device recall da Vinci Xi" surgical system. [Online forum comment]. Retrieved from https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfres/res.cfm?id=150460
  11. Food and Drug Administration. (2018, Sep. 26). Class 2 device recall da Vinci Si/X/Xi surgical system.[Online forum comment]. Retrieved from https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm?id=167074
  12. Leveson, N. G.(2017).The therac-25: 30 years later.Computer Magazine,50,8-11.
  13. Mulero, A. (2019, Jan. 10). FDA speeds up artificial intelligence approvals, review finds. [Online forum comment]. Retrieved from https://www.raps.org/news-and-articles/news-articles/2019/1/fda-speeds-up-artificial-intelligence-approvals-r
  14. Nicholson Price, W., II(2017).Regulating Black-Box Medicine.Michigan Law Review,116(3),421-474.
  15. Ordish, J. (2018). Legal liability for machine learning in healthcare. Retrieved from PHG Foundation website: https://www.phgfoundation.org/documents/briefing-note-legal-liability-for-machine-learning-in-healthcare.pdf
  16. PChome 電子報(2019 年 5 月 6 日).AI 如何成為醫生第三眼.取自 http://epaper.pchome.com.tw/archive/last.htm?s_date=old&s_dir=20190506&s_code=0001&s_cat=
  17. Perriello, B. (2013, July 15). FDA issues Class II recall on Intuitive Surgical’s da Vinci surgical robot, +MASS DEVICE [Online forum comment]. Retrieved from https://www.massdevice.com/fda-issues-class-ii-recall-intuitive-surgicals-da-vinci-surgical-robot/
  18. Swanson, A.,Khan, F.(2012).The legal challenge of incorporating Artificial Intelligence into medical practice.Journal of Health & Life Science Law,6,103-104.
  19. The Food and Drug Administration (2019). Proposed regulatory framework for modifications to Artificial Intelligence/Machine Learning [AI/ML]-Based software as a medical device. Retrieved from: https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf
  20. Tupasel, A.,Nucci, E. D.(2020).Concordance as evidence in the Watson for oncology decision‑support system.AI & Society: Knowledge, Culture and Communication
  21. 中國醫藥大學院附設醫院(2020 年 8月 16 日).乳房超音波腫瘤 AI判讀門診系統演示.取自https://www.cmuh.cmu. edu.tw/CMUHVideo/Detail?no=316
  22. 王若樸(2019 年 4 月 17 日).醫療影像 AI 實例:臺北榮總:AI 只花30 秒就能自動從數百張 MRI 影像找出腫瘤!準確率達 95%.取自 https://www.ithome.com. tw/news/129883
  23. 行政院(2018 年 5 月 24 日).因應歐盟「一般資料保護規則」生效之措施.線上論壇.取自 https://www.ey.gov.tw/Page/448DE008087A1971/d0d0c6c5-d32e-4e3c-b1c4-03db81c30f10
  24. 翁書婷(2017 年 7 月 14 日).癌症病患新選擇:台北醫學大學導入IBM 華生人工智慧治療輔助系統.數位時代.取自 https://www.bnext.com.tw/article/45382/watson-for-oncology-ibm-cancer
  25. 張孟(2019)。人工智慧醫療器材之美國法規管理方向及上市產品簡介。當代醫藥法規月刊,107,10。
  26. 郭家宏(2019 年 4 月 22 日).IBM Watson 醫療部門大裁 70% 員工,AI 醫療遇上了什麼瓶頸?.TechOrange 科技橘報.取自https://buzzorange.com/techorange/2019/04/22/ibm-watson-lay-off/
  27. 陳瑋(2018 年 9 月 4 日).IDx-DR 上市受矚目專家籲對 AI 檢測勿過分樂觀.線上論壇.取自https://www.digitimes.com.tw/iot/article.asp?cat=158&id=0000541059_TXLL105V6N3HC18Q93R0L. 158&id
  28. 黃浥暐(2018 年 10 月 17 日).日本將明定人工智慧(AI)法規,醫生將負起決定最終的診斷和治療方針之責任.線上論壇.取自http://www.angle.com.tw/ahlr/discovery/post.aspx?ipost=3027
  29. 資策會科法所(2018 年 8 月 21 日).人工智慧決策也會產生「偏見」,人類該如何用法律做好把關?.線上論壇.取自 https://buzzorange.com/techorange/2018/08/21/how-big-data-and-ai-will-develop/
  30. 鄭文中(2016 年 6 月 4 日) .醫療行為之告知後同意法則.線上論壇.取自 http://www.medlaw.com.tw/2016/06/04/%E9%84%AD%E6%96%87%E4%B8%AD%E9%86%AB%E7%99%82%E8%A1%8C%E7%82%BA%E4%B9%8B%E5%91%8A%E7%9F%A5%E5%BE%8C%E5%90%8C%E6%84%8F%E6%B3%95%E5%89%87/
被引用次数
  1. 張嘉秀(Chia-Hsiu CHANG)(2021)。護理與智慧醫療法律風險。護理雜誌。68(4)。23-31。