题名 |
Growth of Entire Harmonic Functions in R(superscript n), n≥2 |
DOI |
10.6988/TOJMS.201011.0369 |
作者 |
Devendra Kumar |
关键词 |
Homogeneous harmonic polynomials ; Entire harmonic function ; Laplace's equation ; Lower order and lower type |
期刊名称 |
Tamsui Oxford Journal of Mathematical Sciences |
卷期/出版年月 |
26卷4期(2010 / 11 / 01) |
页次 |
369 - 381 |
内容语文 |
英文 |
英文摘要 |
Let h be a harmonic function on R(superscript n), n≥2. Then there exists on entire function f on C such that f(u)=h(u, 0, ...., 0) for all real u. This fact has been used to deduce theorems for harmonic function on R(superscript n) from classical results about entire functions. Moreover, we have considered the characterizations of lower order and lower type of h in terms of coefficients and ratio of these successive coefficients occurring in power series expansion of f. |
主题分类 |
基礎與應用科學 >
數學 |
被引用次数 |