题名

鐵路線上訂票系統之模擬與政策分析-以臺鐵花東地區為例

并列篇名

A Simulation-based Policy Analysis for Railway Online Booking System: A Case Study of Taiwan Railways Administration

作者

褚志鵬(Chih-Peng Chu);胡守任(Shou-Ren Hu);陳正杰(Frank Cheng-Chieh Chen);陳栢睿(Pai-Jui Chen)

关键词

收益管理 ; 系統模擬 ; 鐵路產業 ; 線上訂票系統 ; Revenue Management ; Simulation ; Railway Industry ; Online Booking System

期刊名称

都市交通

卷期/出版年月

30卷2期(2015 / 12 / 01)

页次

149 - 165

内容语文

繁體中文

中文摘要

本研究針對臺鐵線上訂票現況進行資源重新分配的檢討,透過預購票的預訂時間與數量控制的策略研擬與評估,以改善臺鐵的票務管理與經營績效。研究中假設三種顧客(即旅行業者、商務人士與一般人士)的訂票行為,藉由系統模擬軟體Arena模擬九種管理策略(三種取票時間方式:兩、三與五天,並搭配三種釋票策略:全開釋放、兩階段釋放、與每天釋放10%),以評估不同的策略組合的績效。在模擬實證分析中,本研究藉由搭乘人數、退票人次、取消票次與訂票失敗數的情境設計,搭配不同目標函數(包括:最大化收益、最小化退票成本與最大化總淨值)來衡量不同票務管理策略的績效。研究結果顯示,以最大化總淨值為目標的情況之下,最佳的策略為取票日五天與分兩次釋票的方式;若以最小化退票成本為目標,則取票時間五天與每天釋放10%的釋票方式為最佳的售票策略。

英文摘要

This research investigates the problems associated with the Taiwan Railways Administration's (TRA's) on-line ticket booking system which does not allow for price discrimination and overbooking. We therefore focus on the issues of redistribution strategies for the limited ticket resources. In this research, we construct a simulation model and assume that there are three kinds of customers (i.e., travel agent, businessman and general customer) each with his or her individual booking behavior in the TRA's on-line ticket booking system. Nine scenarios combined different booking confirmation deadlines (i.e., two days, three days and five days) and various resource ticket released strategies (i.e., full allowance in the beginning, half allowance in the beginning and full allowance after a week, and constant daily allowance rate - 10%) are analyzed via simulation experiments with the simulation software Arena. System performances are evaluated by three different objectives (maximizing total system revenue, minimizing total ticket cancellation costs, and maximizing total system net value). Findings in this study show that the best ticket management strategy in terms of maximizing total system net value is to set the booking ticket confirmation deadline as three days after booking combined with the resource ticket released half allowance in the beginning and full allowance after a week. If decision makers aim to pursue the minimal total ticket cancellation costs, setting the booking ticket confirmation deadline as five days with the resource ticket released 10% allowance daily would be more desirable.

主题分类 工程學 > 市政與環境工程
工程學 > 交通運輸工程
参考文献
  1. 鄭永祥、楊仕欣、余宗軒(2008)。鐵路超額訂位收益模式之建構-以台灣高鐵為例。運輸計畫季刊,37(4),431-464。
    連結:
  2. 交通部,臺灣鐵路管理局,旅客服務,http://www.railway.gov.tw/tw/, 民國101 年
  3. SNCF, SNCF, Fare & Cards, http://www.sncf.com/en/passengers, 民國101 年
  4. UK Train, National rail, National rail enquire http://www.nationalrail.co.uk/ 民國101 年
  5. (2005).container terminals and automated transport systems.Springer.
  6. East Japan railway company, JR east pass, Fare & Passing, http://www.jreast.co.jp/e/index.html, 民國101 年
  7. Korea Railroad Corp., Korail, customer service center, http://info.korail.com/mbs/english/index.jsp,民國101 年
  8. Abe, I.(2007).Massachusetts Institute of Technology.
  9. Al-Zubaidi, H.,Tyler, D.(2004).A simulation model of quick response replenishment of seasonal clothing.International Journal of Retail and Distribution Management,32(6),320-327.
  10. Bertsimas, D.,Boer, S.(2005).Simulation-based booking limits for airline revenue management.Operations Research,53(1),90-106.
  11. Ciancimino, A.,Inzerillo, G.,Lucidi, S.,Palagi, L.(1999).A mathematical programming approach for the solution of the railway yield management problem.Transportation Science,33(2),168-181.
  12. García A.,García, I.(2012).A simulation-based flexible platform for the design and evaluation of rail service infrastructures.Simulation Modelling Practice and Theory,27,31-46.
  13. Gorin, T.,Brunger, W. G.,White, M. M.(2006).No-show forecasting: A blended cost-based, PNR-adjusted approach.Journal of Revenue and Pricing Management,5(3),188-206.
  14. Gosavi, A.,Ozkaya, E.,Kathraman, A. F.(2007).Simulation optimization for revenue management of airlines with cancellations and overbooking.Operations Research Spectrum,29(1),21-38.
  15. Iliescu, D. C.,Garrow, L. A.,Parker, R. A.(2008).A hazard model of US airline passengers' refund and exchange behavior.Transportation Research Part B: Methodological,42(3),229-242.
  16. Lee, B.-K.,Jung, B.-J.,Kim, K.-H.,Park, S.-O.,Seo, J.-H.(2006).A simulation study for designing a rail terminal in a container port.Proceedings of the winter simulation conference
  17. Neuling, R.,Riedel, S.,Kalka, K. U.(2004).New approaches to origin and destination and no-show forecasting: excavating the passenger name records treasure.Journal of Revenue and Pricing Management,3(1),62-72.
  18. 陳昭宏、張有恆(1994)。航空公司動態營收管理策略模式之研究。運輸計畫季刊,28(4),593-608。