题名

高濃度氧氣對國中短跑選手在反覆性衝刺速度表現與生理代謝之影響

并列篇名

Effects of Hyperoxia on Speed Performance and Physiological Responses of Repeated Sprint Exercise in Junior Sprinters

DOI

10.5297/ser.1202.008

作者

黃濬棋(Jiun-Chi Huang);黃三峰(San-Feng Huang);李玉麟(Yuh-Lin Lee);李丘威達(Chiou-Wei-Da Lee)

关键词

乳酸排除 ; SpO2 ; 平均血壓 ; lactate elimination ; SpO2 ; mean blood pressure

期刊名称

大專體育學刊

卷期/出版年月

12卷2期(2010 / 06 / 01)

页次

69 - 77

内容语文

繁體中文;英文

中文摘要

本研究主要目的在探討反覆性衝刺運動期間與結束後攝取常氧 (21%) 與高濃度氧氣 (95%) 對於國中短跑 選手在衝刺速度表現與生理代謝反應之影響。方法:以 6 名國中短距離項目徑賽選手為本研究的對象(年齡 15 ± 0.63 歲、身高 166.83 ± 5.23 公分、體重 54 ± 4.34 公斤、訓練年資 1.83 ± 0.75 年),以平衡次序方式進 行前、後共 2 次,中間間隔 3 天,每次 5 x 50 公尺衝刺賽跑測試,並於 3 分鐘的間歇休息期間與所有衝刺運 動結束後的 7 分鐘內分別攝取常氧或高濃度氧氣。衝刺期間與結束後分別取得參加者的速度成績、乳酸、心 跳率與 SpO2 等參數分別以相依樣本 t 考驗與重複量數單因子變異數分析,分別進行不同情況下與相同情況 下不同時間點之分析,顯著水準 p < .05。結果顯示:一、在常氧與高氧情況下的每次衝刺速度之間並未達顯 著之差異 (p > .05)。但是,若比較個別的情況下的 5 次衝刺速度則發現,在常氧下,第 5 次的速度顯著的低 於第 1、2 與 3 次的速度表現 (p < .05)。而高氧的情況,則 5 次的衝刺速度間則沒有顯著的差異產生。二、 於衝刺期間,乳酸堆積的情形於常氧與高氧的情況下產生相同的曲線,並未達顯著的差異。但是,在所有衝 刺結束後 7 分鐘的恢復期中,則於高氧的情況下獲得較佳的乳酸排除效果。三、SpO2 則在大部分的檢測點 發現,於高氧情況下顯著的高於常氧情況下 (p < .05)。四、心跳率與平均血壓則在常氧與高氧等情況下未達 顯之差異,並且在整個過程中擁有相同的曲線變化。本研究結論:依據本研究的結果顯示,在反覆性的衝刺 運動間歇休息中攝取高濃度氧氣,既使在乳酸堆積量與常氧下比較沒有差異,但是,可獲得較佳的運動速度 維持與表現。並且於運動後恢復期間攝取高濃度氧氣具有較佳的乳酸排除效果。

英文摘要

The purpose of this study was to compare the effects of inhaling either hyperoxic (95%) or normoxic (21%) gas at intervals and recovery period of repeated sprint exercise on performance and physiological responses. We hypothesized that 1.95% O2 at intervals would benefit to sprint performance at repeated sprint exercise and, 2. to eliminate the lactate in the recovery period after all sprint trials. Six junior high school male sprinters (age: 15±0.63 yr, height: 166.83±5.23 cm; weight: 54±4.34 kg; training: 1.83±0.75 yr) were participated in two sessions of 5 x 50 m sprint trials with three minutes resting intervals, and subjected to either 95% O2 or 21% O2 during all resting intervals and seven minutes recovery period after all sprint exercises were observed. No significant differences on speed of same trails' sprinting between hyperoxia and normoxia were observed when compared within each session. Speed at last trial (5th sprinting) was significantly dropped than 1st, 2nd and 3rd sprinting trials (p<.05) under normoxia, but same situation was not observed under hyperoxia. 2. The lactate accumulations had same curve pattern within all sprint trials between hyperoxia and normoxia, but within recovery period of each session the elimination rate of lactate was more efficient under hyperoxia compared to normoxia. 3. The SpO2 were significantly higher at most checking points under hyperoxia than normoxia. 4. Heart rate and blood pressure were not significantly changed between hyperoxia and normoxia, and same curve pattern within all checking points were also observed. The data showed that sprint quality was maintained under hyperoxia although the accumulations of lactate were not significant differences from normoxia within all interval sprint trials, and hyperoxia in the recovery period also showed more efficient on blood elimination rate.

主题分类 社會科學 > 體育學
参考文献
  1. 黃鱗棋、李玉鱗、張嘉澤(2008)。高強度間歇運動負荷前中後持續攝取高濃度氧氣對新陳代謝與體循環之影響。國立臺灣體育大學論叢,19(1),49-62。
    連結:
  2. Billat, L. V.(2001).Interval training for performance: A scientific and empirical practice, Special recommendations for middle-and long-distance running, Part II: Anaerobic interval training.Sports Medicine,31,75-90.
  3. Burgomaster, K. A.,Heigenhauser, G. J.,Gibala, M. J.(2006).Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance.Journal of Applied Physiology,100,2041-2047.
  4. Burgomaster, K. A.,Hughes, S. C.,Heigenhauser, G. J.,Bradwell, S. N.,Gibala, M. J.(2005).Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans.Journal of Applied Physiology,98,1985-1990.
  5. GibaJa, M. J.,Little, J. P.,van Essen, M.,Wilkin. G. P.,Burgomaster, K. A.,Safdar, A.(2006).Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance.The Journal of Physiology,575,901-911.
  6. Hollmann, W.,Strueder, H. K.,Rojas Vega, S.(2002).Einfluss von respiraorischem Stress auf die Prolaktinsekretion bei ausdauersportlern.BISp-Jahrbuch,91-94.
  7. Houssière, A.,Najem, B.,Cuylits, N.,Cuypers, S.,Naeije, R.,van de Borne, P.(2006).Hyperoxia enhances metaboreflex sensitivity during static exercise in humans.American Journal of Physiology-Heart Circulatory Physiology,291(1),H210-H215.
  8. Knight, D. R.,Poole, D. C.,Hogan, M. C.,Bebout, D. E.,Wagner, P. D.(1996).Effect of inspired O2 concentration on leg lactate release during incremental exercise.Journal of Applied Physiology,81,246-251.
  9. Perry, C. G.,Reid, J.,Perry, W.,Wilson, B. A.(2005).Effects of hyperoxic training on performance and cardiorespiratory response to exercise.Medicine and Science in Sports and Exercise,37,1175-1179.
  10. Plet, J.,Pedersen, P. K.,Jensen, F. B.,Hansen, J. K.(1992).Increased working capacity with hyperoxia in humans.European Journal and Applied Physiology and Occupational Physiology,65,171-177.
  11. Prieur, F.,Benoit, H.,Busso, T.,Castells, J.,Geyssant, A.,Denis, C.(2002).Effects of moderate hyperoxia on oxygen consumption during submaximal and maximal exercise.European Journal of Applied Physiology,88,235-242.
  12. Stellingwerff, T.,Glazier, t.,Watt, M. J.,Leblanc, P. J.,Heigenhauser, G. J.,Spriet, L. L.(2005).Effects of hyperoxia on skeletal muscle carbohydrate metabolism during transient and steady-state exercise.Journal of Applied Physiology,98,250-256.
  13. Stellingwerff, T.,LeBlanc, P. L.,Hollidge, M. G.,Heigenhauser, G. J.,Spriet, L. L.(2006).Hyperoxia decreases muscle glycogenolysis, lactate production, and lactate efflux during steady-state exercise.American Journal of Physiology-Endocrinology and Metabolism,290,1180-1190.