题名 |
最新觀點:強化肌力訓練的新思維 |
并列篇名 |
Viewpoint: New Thoughts on Facilitation of Muscle Strengthening |
DOI |
10.5297/ser.1803.editorial |
作者 |
黃英修(Ing-Shiou Hwang) |
关键词 | |
期刊名称 |
大專體育學刊 |
卷期/出版年月 |
18卷3期(2016 / 09 / 30) |
页次 |
i - v |
内容语文 |
繁體中文;英文 |
中文摘要 |
提升肌力訓練的效率是運動科學很重要的課題,肌力訓練可同時強化肌力與肌耐力,有助於動作表現增加並減少疲勞與運動傷害的發生。造成肌力提升的原因除了肌肉組織結構改變之外,還有神經系統適應性的變化。然而傳統肌力訓練所秉持的原則,多由訓練型式、負荷強度與順序性等面向去思考肌肉組織與功能的改變,少從誘發神經活性的觀點去探討提升肌肉適能的可行性,特別是透過改變大腦皮質神經細胞 (cortical neuron) 活性來影響肌力訓練的效率。直接調控大腦神經細胞活性的研究,給人的印象多半是以齧齒類或較高等靈長類動物所進行的實驗室研究,對人類大腦神經細胞活性進行調控似乎不容易,且有許多倫理或實驗技術的考量。直到最近非侵入性大腦刺激技術(穿顱磁刺激 [transcranial magneticstimulation, TMS] 與穿顱直流電刺激 [transcranial direct current stimulation, tDCS])有突破性的發展,尤其是價格相對低廉的穿顱電刺激,可以在無痛楚無傷害性的情形下,以簡易施行的方式改變人體大腦皮質神經細胞的活性,使穿顱直流電刺激成為近年神經科學的新顯學。穿顱直流電刺激基本工作原理是將低強度(小於 2 mA)直流電通過頭皮和頭骨到達大腦皮質。穿顱電刺激改變大腦皮質細胞的興奮性可區分為即時效應 (acute effect) 與後續效應 (after effect) (Lang et al., 2005; Nitsche et al., 2005)。即時效應發生於將電流通過大腦皮質就會立即產生的電生理反應,其作用原理是正電荷可提升皮質細胞的靜止膜電位 (restingmembrane potential),使得大腦皮質細胞易達到激發閾值 (firing threshold) 而產生神經衝動;相反地,負電荷使原本的負靜止膜電位更加驅向負電位,使得大腦皮質細胞越不利於激發。有趣的是:經過穿顱電刺激一段時間過後,即使停止穿顱電刺激,正負電所產生的大腦皮質細胞的興奮性與抑制仍會持續,時間可長達 1 小時,並不會因穿顱電刺激的停止而消失,這種現象稱為後續效應,目前認為後續效應腦內神經傳導物質濃度變化造成,影響了麩胺酸受體 (NMDA receptor) 與伽傌丁氨基酪酸受體 (GABA receptor) 的作用。不同專業領域的學者開始將非侵入性大腦刺激技術應用在其研究領域,獲致許多令人注目的發現,包括:憂鬱症防治 (Brunoni et al., 2016; Nitsche, Boggio, Fregni, & PascualLeone,2009)、疼痛降低 (Brasil-Neto, 2016; O’Connell, Wand, Marston, Spencer, & Desouza,2011)、與神經病患動作功能重建 (D’Agata et al., 2016; Stagg et al., 2012);其中最吸引運動科學學者投入的應用是利用穿顱電刺激提升肌力訓練的效率 (Hendy, Teo, & Kidgell, 2015;Washabaugh, Santos, Claflin, & Krishnan, 2016)。這些實驗作法與電刺激參數使用因實驗設計而有些差異,但最大的共通處為:肌力訓練或動作執行時間,藉著正電極置於對側大腦半球的主要運動區,以提高主要運動區皮質細胞的興奮性 (Langhorne, Bernhardt, & Kwakkel,2011),從而獲得較好的肌力訓練成果。從過去穿顱直流電刺激的研究證據也給我們帶來一些想法,例如:不同肌力訓練方式是否需不同穿顱直流電刺激模式來最佳化?如何藉由穿顱直流電刺激延緩運動訓練造成的肌肉疲勞?穿顱直流電刺激是否可幫忙訓練傳統訓練不易訓練到的肌肉?何種運動技術的訓練與運動傷害預防可以藉由穿顱直流電刺激來達成?希望透過這些新發現可以提供給《大專體育學刊》的讀者的研究思考方向,產生運動實務價值與提升選手競爭力。 |
英文摘要 |
Increase in efficacy of muscle strengthening is an important issue in the field of sport science. Musclestrengthening is credited with potentiation of muscle strength and muscle endurance, adding to motorperformance, fatigue resistance, as well as reduction in sport injuries. Muscle strength increases after trainingresult from structural changes in muscle fibers and adaptation of neural system. Traditional muscle strengtheningguided by the principles of specificity, overload, and arrangement often highlight structural changes in musclefibers and function benefits associated with training. However, little is concerned how to level up muscularcapacity through facilitation of neuronal excitability, such as alteration in efficacy of muscle strengthening withcentral modulation of cortical neuron. Research of direct control over cortical excitability are reminiscent ofanimal studies in the laboratory using the rodents and primates. It seems not easy to tune cortical excitability ofthe human, on account of ethical issues and technique barriers in the laboratory. For advancements of transcranialmagnetic stimulation and transcranial direct current stimulation (tDCS) in the recent years, changes in corticalexcitability of human in a non-harmful and painless manner become feasible. In particular, tDCS is spotlightedfor convenient application and lower price. tDCS drives low-intensity current (< 2 mA) to the cortex throughthe skull, producing acute effect and after effect on the cortex respectively (Lang et al., 2005; Nitsche et al.,2005). Acute effect is an immediate electrophysiological response of the cortical neurons. The anodal stimulationincreases the neuronal excitability of the area being stimulated, as the positive current causes a depolarization ofthe resting membrane potential of cortical neurons. On the contrary, cathodal stimulation decreases the neuronalexcitability of the area being stimulated. Interestingly, excitation of inhibition of cortical excitability withtDCS persists for an hour once the stimulation has ended. The phenomenon is called after effect, in relation toconcentration changes in neurotransmitters of the brain that effect on the NMDA and GABA receptors. Scholarsin different fields start to use the non-invasive brain stimulation techniques in many fields with several worthnotingimplications, including depression prevention (Brunoni et al., 2016; Nitsche, Boggio, Fregni, & PascualLeone,2009), pain relief (Brasil-Neto, 2016; O’Connell, Wand, Marston, Spencer, & Desouza, 2011), and motorrestoration of neurological victims (D’Agata et al., 2016; Stagg et al., 2012). Of particular note is the use of tDCSfor improving efficacy of muscle strengthening (Hendy, Teo, & Kidgell, 2015; Washabaugh, Santos, Claflin, &Krishnan, 2016). Despite some inconsistencies in parametric setting of the electrical stimulation, positive currentis always applied over the contralateral motor cortex in the training session (Langhorne, Bernhardt, & Kwakkel,2011). The increase in cortical excitability with the positive current is thought to associate with a superiorefficacy of muscle strengthening. Aforementioned evidence collectively gives us some inputs for future study,such as how to optimize efficacy of muscle strengthening of different training modes with tDCS? How to resistSports & Exercise ResearchVol. 18, No. 3, i-v (September, 2016)DOI:10.5297/ser.1803.editorialivIng-Shiou Hwang vexercise-induced fatigue with tDCS? How to train the muscles that are difficult to be exercised with traditionalapproaches? Can tDCS help with skill advancement and injury prevention of the athletes? The message ofthe work is hereby to provide potential readers of the Journal a preliminary thought to promote athletes’competitiveness with practical values. |
主题分类 |
社會科學 >
體育學 |
参考文献 |
|
被引用次数 |