题名

Constructing a Team Performance Evaluation Model of FIVB Volleyball Women's World Cup

并列篇名

建構世界盃女子排球賽團隊績效評估模式

DOI

10.5297/ser.202203_24(1).0003

作者

楊總成(Tsung-Cheng Yang)

关键词

multicriteria decision-making ; Volleyball Information System ; match player rankings (P3) ; grey relational analysis ; 多準則決策 ; 排球資訊系統 ; 比賽選手排名(P3) ; 灰關聯分析

期刊名称

大專體育學刊

卷期/出版年月

24卷1期(2022 / 03 / 31)

页次

32 - 44

内容语文

英文

中文摘要

The purposes of this study are to construct a team performance evaluation model of the FIVB Volleyball Women's World Cup using the multicriteria decision-making (MCDM) concept, and to conduct an empirical analysis of the teams in the 2019 competition. Research data collected the report of match player rankings (P3) from the Volleyball Information System (VIS), which were based on 198 matches played in 2007, 2011, and 2015. This study employs grey relational analysis (GRA) for performance evaluation, and ranks the results using the Spearman rank-order correlation coefficient for verification. The results show that the 12 criteria used to evaluate teams' performance had different effects on the teams' game-winning rates. The 5 key evaluation skill criteria were: spike points, spike faults, dig faults, serve aces, and kill blocks. It concludes that considering the volleyball teams' performance in both scoring and non-scoring skills provides a better explanatory power for win rates, and as such, our findings confirm that the performance of non-scoring skills contributes to match outcomes. This study suggests that the non-scoring skills training in these skills should be emphasized to improve a team's win rate.

英文摘要

本研究目的在應用多準則決策概念,建構世界盃女子排球賽團隊績效評估模式,並進行2019年比賽團隊實證分析。研究資料來自國際排球總會排球資訊系統的比賽選手排名(P3)報告,收集2007、2011及2015年,共198場比賽數據。本研究應用灰關聯分析進行績效評估,排序結果採以斯皮爾曼等級相關係數進行檢定。結果顯示評估團隊表現的12項準則對於團隊比賽勝率有不同比例影響,5項關鍵評估技術準則依序為;攻擊得分、攻擊失誤、防守失誤、發球得分與攔網得分。本研究結論:排球團隊應同時考慮得分技術與非得分技術的表現,能提升更好勝率的解釋力,且證實非得分技術表現對比賽結果貢獻。綜論上述,本研究建議進行排球團隊訓練時,擬定訓練計畫應強化非得分技術訓練,進而提升比賽的勝率。

主题分类 社會科學 > 體育學
参考文献
  1. Chang, E.-C.(2011)。Using the grey relational analysis to explore the relationship between scoring factors and performance of volleyball competition。Physical Education Journal,44(2),275-289。
    連結:
  2. Chang, E.-C.(2007)。A correlational study on scoring factors and match winning percentages in women’s volleyball games, Universiade 2005 Izmir。Journal of Physical Education in Higher Education,9(2),51-63。
    連結:
  3. Chang, K.-H.,Lin, K.-Y.,Lin, C.-C.,Lin, Y.-C.(2019)。The evaluation of army rugby players’ sports injuries: Application of the modified Delphi method and the fuzzy analytic hierarchy process。Bulletin of Sport and Exercise Psychology of Taiwan,19(1),41-57。
    連結:
  4. Chen, C.-C.(2016)。Construction and empirical analysis of a model for evaluating the performance of Chinese Professional Baseball League players。Journal of Taiwan Society for Sport Management,16(1),171-202。
    連結:
  5. Chuang, C.-C.,Chen, T.-T.,Chen, C.-C.(2013).Construction of performance enhancing strategies for Taiwan professional baseball teams.Sports & Exercise Research,15(4),394-410.
    連結:
  6. Budak, G.,Kara, İ.,İç, Y. T.(2017).Weighting the positions and skills of volleyball sport by using AHP: A real life application.IOSR Journal of Sports and Physical Education,4(1),23-29.
  7. Chen, C.-C.,Lee, Y.-T.,Tsai, C.-M.(2014).Professional baseball team starting pitcher selection using AHP and TOPSIS methods.International Journal of Performance Analysis in Sport,14(2),545-563.
  8. Chuang, C.-C.,Chen, T.-T.,Chen, C.-C.(2018).Application of grey theory in the construction of impact criteria and prediction model of players’ salary structure.Mathematical Problems in Engineering,2018,7365615.
  9. Deng, J.(1989).Introduction to grey system theory.The Journal of Grey System,1(1),1-24.
  10. Drikos, S.,Sotiropoulos, K.,Barzouka, K.,Angelonidis, Y.(2020).The contribution of skills in the interpretation of a volleyball set result with minimum score difference across genders.International Journal of Sports Science & Coaching,15(4),542-551.
  11. Fédération Internationale de Volleyball. (2019). China skipper Zhu heads 2019 Women’s World Cup dream team. Retrieved from https://www.volleyball.world/en/volleyball/worldcup/2019/news/china-skipper-zhu-heads-2019-womensworld?id=89037
  12. Fédération Internationale de Volleyball. (n.d.-b). Volleyball Information System (VIS). Retrieved from http://www.fivb.org/en/volleyball/VIS.asp
  13. Fédération Internationale de Volleyball. (n.d.-a). Terms of service. Retrieved from https://www.fivb.com/en/about/terms%20of%20service
  14. Hernández-Hernández, E.,Montalvo-Espinosa, A.,García-de-Alcaraz, A.(2020).A time-motion analysis of the cross-over step block technique in volleyball: Non-linear and asymmetric performances.Symmetry,12(6),1027.
  15. Huang, I. B.,Keisler, J.,Linkov, I.(2011).Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends.Science of the Total Environment,409(19),3578-3594.
  16. Kiker, G. A.,Bridges, T. S.,Varghese, A.,Seager, T. P.,Linkov, I.(2005).Application of multicriteria decision analysis in environmental decision making.Integrated Environmental Assessment and Management,1(2),95-108.
  17. Kountouris, P.,Drikos, S.,Aggelonidis, I.,Laios, A.,Kyprianou, M.(2015).Evidence for differences in men’s and women’s volleyball games based on skills effectiveness in four consecutive Olympic tournaments.Comprehensive Psychology,4
  18. Lima, R.,Palao, J. M.,Moreira, M.,Clemente, F. M.(2019).Variations of technical actions and efficacy of national teams’ volleyball attackers according to their sex and playing positions.International Journal of Performance Analysis in Sport,19(4),491-502.
  19. Liu, S.,Yang, Y.,Forrest, J.(2017).Introduction to grey systems research.Grey data analysis: Methods, models and applications,New York, NY:
  20. Oliveira, A.,Vaz, L.,Pastore, J.,João, P. V.(2018).Discriminate scoring skills and non-scoring skills according to results in the Brazilian men’s volleyball SuperLeague.Montenegrin Journal of Sports Science and Medicine,7(1),73-79.
  21. Ozceylan, E.(2016).A mathematical model using AHP priorities for soccer player selection: A case study.South African Journal of Industrial Engineering,27(2),190-205.
  22. Peña, J.,Casals, M.(2016).Game-related performance factors in four European men’s professional volleyball championships.Journal of Human Kinetics,53(1),223-230.
  23. Pradhan, S.(2018).Ranking regular seasons in the NBA’s modern era using grey relational analysis.Journal of Sports Analytics,4(1),31-63.
  24. Pradhan, S.(2017).Applying grey relational analysis to the fight evaluation of MLB teams: An extension to Chen et al. (2006, 2010).Journal of Statistics and Management Systems,20(6),1167-1190.
  25. Saaty, T. L.,Ergu, D.(2015).When is a decision-making method trustworthy? Criteria for evaluating multi-criteria decision-making methods.International Journal of Information Technology & Decision Making,14(6),1171-1187.
  26. Tiedemann, T.,Francksen, T.,Latacz-Lohmann, U.(2011).Assessing the performance of German Bundesliga football players: A non-parametric metafrontier approach.Central European Journal of Operations Research,19(4),571-587.
  27. Valladares, N.,García-Tormo, J. V.,João, P. V.(2016).Analysis of variables affecting performance in senior female volleyball World Championship 2014.International Journal of Performance Analysis in Sport,16(1),401-410.
  28. Yu, Y.,García-De-Alcaraz, A.,Cui, K.,Liu, T.(2020).Interactive effects of home advantage and quality of opponent in Chinese Women’s Volleyball Association League.International Journal of Performance Analysis in Sport,20(1),107-117.
  29. Yu, Y.,García-De-Alcaraz, A.,Wang, L.,Liu, T.(2018).Analysis of winning determinant performance indicators according to teams level in Chinese women’s volleyball.International Journal of Performance Analysis in Sport,18(5),750-763.
被引用次数
  1. 楊總成,翁仲邦,王美麗(2022)。以灰關聯分析優化排球運動員選材之輔助模式。運動教練科學,68,15-25。
  2. (2024).Rankings and Benchmarks of Volleyball Performance Indicators in High-Intensity Volleyball Games.運動表現期刊,11(2),147-158.