题名

以流動床操作模式評估薑黃微粒子造粒包覆率及其品質分析

并列篇名

Effect of Fluid Bed Operated Mode on Agglomerated Turmeric Microparticles’s Coating Efficiency and Quality Analysis

DOI

10.6578/TJACFS.2017.002

作者

許俊祥(Chun-Hsiang Hsu);江伯源(Po-Yuan Chiang)

关键词

薑黃 ; 流動床 ; 入風溫度(T_(inlet)) ; 噴霧流速(S_r) ; 粉體品質 ; 包埋量 ; Turmeric ; Fluidized bed ; Inlet air temperature ; Spray rate ; Powder quality ; Coating efficiency

期刊名称

臺灣農業化學與食品科學

卷期/出版年月

55卷1期(2017 / 02 / 01)

页次

13 - 29

内容语文

繁體中文

中文摘要

“薑黃”為十分熱門之保健素材,有抗氧化、抗癌、抗阿茲海默症等許多保健功效。其主要活性物薑黃 素具有不耐pH與光等缺點,如何保護其不受外在環境破壞成為熱門研究方向。“流動床”造粒技術為微膠囊粉粒重要製備技術之一,許多文獻指出操作條件對粉體品質有很大影響,如何改善造粒效果及品質亦是重要待突破之技術。本研究以薑黃萃取液探討不同入風溫度(T_(inlet))及噴霧流速(S_r) 於造粒過程中黏著、包覆與乾燥對品質及薑黃包覆率影響,結果如下:當T_(inlet)較高時其粉粒以70℃、流速10 rpm造粒180分鐘有最低Aw:0.155。隨造粒時間增加L值下降,a、b值增加,T_(inlet)提高變化更顯著,粒徑分析隨造粒時間延長其粒徑之分佈 皆增大 (向右位移),粒徑增長最快,且最大達330.62 μm,流動性試驗中可知經造粒後,粉體之流動性增加,其中以60℃、7 rpm有最低CI% (Carr index):10.91%及Hr:1.12,屬於流動性非常好之粉體,在熱分析中可以得知T_g隨造粒時間增加,由包埋量分析中可知操作參數對於包埋量有顯著的影響,其中以70℃ 、7 rpm有較高的包埋量0.477 mg/g ( p < 0.05),由結果知操作參數對品質是非常重要的影響因子,考量包埋率、粉體品質可推測60℃ 、7 rpm為較適條件;希盼本實驗結果能做為流動床包埋薑黃相關研究與產業生產時之參考,並為未來進行多層次包埋奠定基礎。

英文摘要

"Turmeric" is a very popular healthy ingredient with many such health benefits as antioxidation, anticancer, anti-alzheimer’s disease. The main bioactive compound in turmeric is curcumin, which intolerance pH and light. There are popular research on how to protect it from external environment. Fluid bed agglomeration is an important microcapsulated powder produced technique. There were many literatures showed that operated parameters influenced on the quality of powders, deeply. How to improve the agglomerated effect and quality is an important unbreakthrough technology. In this study, we used turmeric extract as indicator to investigate the inlet air temperature(T_(inlet)) and spray rate(S_r) of binder, effected on quality and coating efficiency during adhesive, coating and dried. The experiment results were as follow: there was lowest water activity: 0.155, when agglomerated for 180 min under 70℃ 10 rpm. The increased of agglomerated time followed by L value decreased and a,b value increased, and the change was more significant when T_(inlet) increased. The particle size distribution was increased (shifted to right) when agglomerated time increased, and the biggest was 330.62 μm. In flowability test, the powder flowability increased after agglomeration. Agglomeratd with 60℃ 7 rpm had lowest CI% : 10.91% and Hr : 1.12, which flowability classified excellent. T_g was increased with agglomerated time, in thermal analyzed. We could know that operated parameters had significantly effect on coating efficiency. Among them agglomerated with 70℃ 7 rpm had highest coating efficiency: 0.477 mg/g ( p < 0.05). This study proved that operated parameters was very important impact factor for quality. Considering coating efficiency, powder quality, 60℃ 7 rpm was the best operating conditions. We hoped that the results of this study could apply and be a referenced on the related research and industrial production encapsulated turmeric by fluid bed technique. And laid the foundation on multiple layer encapsulated for the future.

主题分类 生物農學 > 農業
生物農學 > 森林
生物農學 > 畜牧
生物農學 > 漁業
生物農學 > 農產加工
工程學 > 化學工業
参考文献
  1. 邱琴瑟,郭堉圻(2011)。薑黃素的成分與應用。中華體育季刊,25,410-418。
    連結:
  2. AACC International(2000).Approved Methods of the American Association of Cereal Chemists.St. Paul, MN:The Association.
  3. Anand, P.,Sundaram, C.,Jhuran, S.,Kunnumakkara, A. B.,Aggarwal, B. B.(2008).Curcumin and cancer: An "old-age" disease with an "age-old" solution.Cancer Lett.,267,133-164.
  4. Aulton, M. E.(2002).Pharmaceutics: The Science of Dosage Form Design.New York:Churchill & Livingstone.
  5. Benelli, L.,Cortés-Rojas, D. F.,Souza, C. R. F.,Oliveira, W. P.(2015).Fluid bed drying and agglomeration of phytopharmaceutical compositions.Powder Technology,273,145-153.
  6. Bhowmik, D.,Chiranjib, B.,Sampath Kumar, K. P.,Chandira, M.,Jayakar, B.(2009).Turmeric: a herbal and traditional medicine.Arch Appl Sci Res,1,86-108.
  7. Carr, R. L.(1965).Evaluating flow properties of solids.Chemical Engineer,72,163-168.
  8. Chainani-Wu, N.(2003).Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa).J. Altern. Complement. Med.,9,161-168.
  9. Chiou, D.,Langrish, T. A. G.(2007).Development and characterisation of novel nutraceuticals with spray drying technology.J. Food Eng.,82,84-91.
  10. Coronel-Aguilera, C. P.,Martín-Gonález, M. F. S.(2015).Encapsulation of spray dried β-carotene emulsion by fluidized bed coating technology.Int. J. Food Sci. Tech.,62,187-193.
  11. Dewettinck, K.,Huyghebaert, A.(1999).Fluidized bed coating in food technology.Trends Food Sci. Tec.,10,163-168.
  12. Frautschy, S. A.,Hu, W.,Kim, P.,Miller, S. A.,Chu, T.,Harris-White, M. E.,Colea, G. M.(2001).Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology.Neurobiol. Aging,22,993-1005.
  13. Goel, A.,Kunnumakkara, A. B.,Aggarwal, B. B.(2008).Curcumin as “Curecumin”: From kitchen to clinic.Biochem. Pharmacol.,78,787-809.
  14. Guignon, B.,Duquenoy, A.,Dumoulin, E. D.(2002).Fludi bed encapsulation of particles: principles and practice.Drying Technol.,20,419-447.
  15. Hui, L.,Berlo, D. V.(2008).Curcumin Protects Against Cytotoxic and Inflammatory Effects of Quartz Particles but Causes Oxidative DNA Damage in a Rat Lung Epithelial Cell Line.Toxicol. Appl. Pharm.,15,115-124.
  16. Irving, G. R. B.,Karmokar, A.,Berry, D. P.,Brown, K.,Steward, W. P.(2011).Curcumin: The potential for efficacy in gastrointestinal diseases.Best Pract. Res. Cl. Ga.,25,519-534.
  17. Ito, M.,Ohta, K.,Nishio, Z.,Tabaki, T.,Hashimoto, N.,Funatsuki, W.,Miura, H.,Yamauchi, H.(2007).Quality evaluation of Yellow Alkaline Noodles Made from the Kitanokaori Wheat Cultivar.Food Sci. Technol. Res.,13,253-260.
  18. Iveson, S. M.,Litster, D. L.,Hapgood, K.,Ennis, B. J.(2001).Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review.Powder Technology,117,3-39.
  19. Jayaprakasha, G. K.,Rao, L. J. M.,Sakariah, K. K.(2002).Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin.J. Agric. Food Chem.,50,3668-3672.
  20. Joe, B.,Lokesh, B. R.(1994).Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages.BBA Molecular Cell Research,1224,255-263.
  21. Johnson, J. J.,Mukhtar, H.(2007).Curcumin for Chemoprevention of Colon Cancer.Cancer Lett.,255,170-181.
  22. Kage, H.,Abe, R.,Hattanda, R.,Zhou, T.,Ogura, H.,Matsuno, Y.(2003).Effect of solid circulation rate on coating efficiency and agglomeration in circulating fluidized bed type coater.Powder Technology,130,203-210.
  23. Kha, T. C.,Nguyen, M. H.,Roach, P. D.(2010).Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder.J. Food Eng.,98,385-392.
  24. Kim, S.,Park, J. B.,Hwang, K. I.(2002).Quality attributes of various varieties of Korean red pepper powders (Capsicum annuum L.) and color stability during sunlight exposure.J. Food Sci.,67,2957-2961.
  25. Li, J.,Shin, G. H.,Lee, W. I.,Chen, X.,Park, H. J.(2016).Soluble starch formulated nanocomposite increases water solubility and stability of curcumin.Food Hydrocolloids,56,41-49.
  26. Lin, J. K.,Pan, M. H.,Shiau, S. Y. L.(2000).Recent studies on the biofunctions and biotransformations of curcumin.Biofactors,13,153-158.
  27. Maskan, M.(2001).Kinetics of color change of kiwi fruits during hot air and micro-wave drying.J. Food Eng.,48,167-17.
  28. Palamanit, A.,Soponronnarit, S.,Prachayawarakorn, S.,Tungtrakul, P.(2013).Effects of inlet air temperature and spray rate of coating solution on quality attributes of turmeric extract coated rice using top-spray fluidized bed coating technique.J. Food Eng.,144,132-138.
  29. Palzer, S.(2009).Influence of material properties on the agglomeration of water soluble amorphous particles.Powder Technology,189,318-325.
  30. Pan, M. H.,Huang, T. M.,Lin, J. K.(1999).Biotransformation of curcumin through reduction and glucuronidation in mice.Drug. Metab. Dispos.,27,486-494.
  31. Porat, Y.,Abramowitz, A.,Gazit, E.(2006).Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism.Chem. Biol. Drug. Des.,67,27-37.
  32. Rao, C. V.(2007).Regulation of COX and LOX by Curcumin.Adv. Exp. Med. Biol.,595,213-226.
  33. Rathod, J. H.(2008).New Jersey, USA,Rutgers University.
  34. Ravindran, P. N.,Nirmal Babu, K.,Sivaraman, K.(2007).Turmeric, the genus curcuma.CRC Press/Taylor & Francis Group.
  35. Rayo, L. M.,Carvalho, L. C.,Sardá, F. A. H.,Dacanal, G. C.,Menezes, E. W.,Tadini, C. C.(2016).Production of instant green banana flour (Musa cavendischii, var. Nanicão) by a pulsed-fluidized bed agglomeration.Int. J. Food Sci. Tech.,63,461-469.
  36. Reddy, A. C. P.,Lokesh, B. R.(1994).Studies on Anti-Inflammatory Activity of Spice Principles and Dietary n-3 Polyunsaturated Fatty Acids on Carrageenan-lnduced Inflammation in Rats.Ann. Nutr. Metab.,38,349-358.
  37. Schubert, H.(1993).Instantization of powdered food products.Int. Chem. Eng.,33,28-45.
  38. Sharma, R. A.,Gescher, A. J.,Steward, W. P.(2005).Curcumin: The story so far.Eur. J. Cancer,41,1955-1968.
  39. Shen, L.,Zhang, H. Y.,Ji, H. F.(2005).A theoretical study on Cu(II)-chelating properties of curcumin and its implications for curcumin as a multipotent agent to combat Alzheimer’s disease.J. Mol. Struc.-Theochem,757,199-202.
  40. Siviero, A.,Gallo, E.,Maggini, V.,Gori, L.,Mugelli, A.,Firenzuoli, F.,Vannacci, A.(2015).Curcumin, a golden spice with a low bioavailability.J. Herb. Med.,5,57-70.
  41. Skrzypczak-Jankun, E.,McCabe, N. P.,Selman, S. H.,Jankun, J.(2000).Curcumin inhibits lipoxygenase by binding to its central cavity: theoretical and X-ray evidence.Int. J. Mol. Med.,6,521-526.
  42. Smith, W. L.,Dewitt, D. L.,Garavito, R. M.(2000).Cyclooxygenases: Structural, Cellular, and Molecular Biology.Annu. Rev. Biochem.,69,145-182.
  43. Sou, K.,Inenaga, S.(2008).Loading of Curcumin into Macrophages Using Lipid-based Nanoparticles.Int. J. Pharm.,352,287-293.
  44. Szulc, K.,Lenart, A.(2013).Surface modification of dairy powders: Effects of fluid-bed agglomeration and coating.Int. Dairy J.,33,55-61.
  45. Tonnesen, H. H.,Karlsen, J.(1985).Studies on curcumin and curcuminoids: VI - kinetics of curcumin degradation in aqueous solution.Z Lebensm Unters Forsch,180,402-404.
  46. Turchiuli, C.,Jimenèz, T.,Dμmoulin, D.(2011).Identification of thermal zones and population balance modelling of fluidized bed spray granulation.Powder Technology,208,542-552.
  47. Turchiulli, C.,Eloualia, Z.,Mansouri, N. E.,Dumoulin, E.(2005).Fluidised bed agglomeration: Agglomerates shape and end-use properties.Powder Technology,157,168-175.
  48. Wang, Y. J.,Pan, M. H.,Cheng, A. L.,Lin, L. N.,Ho, Y. S.,Hsieh, C. Y.,Lin, J. K.(1997).Stability of curcumin in buffer solutions and characterization of its degradation products.J. Pharmaceut. Biomed.,15,1867-1876.
  49. 日本粉體工業技術協會(編)(1991).造粒Handbook.東京,日本:日本粉體工業技術協會.
  50. 王聖文(2014)。嘉義,臺灣,國立嘉義大學食品科學系。
  51. 呂家穎(2005)。基隆,臺灣,國立臺灣海洋大學食品科學系。
  52. 林宏昇(2011)。臺中,臺灣,國立中興大學食品暨應用生物科技學系。
  53. 張玉麟(2012)。屏東,臺灣,國立屏東科技大學生物科技研究所。
  54. 陳琇瑜(2013)。臺中,臺灣,國立中興大學食品暨應用生物科技學系。
  55. 陳運造(2007)。熱門的保健植物-薑黃。苗栗區農業專訊,38,19-20。
  56. 楊孟婷(2014)。臺中,臺灣,國立中興大學食品暨應用生物科技學系。
  57. 劉勇男(2008)。基隆,臺灣,國立臺灣海洋大學食品科學系。
  58. 謝明祥,黃文濤,林玴竹,施科念(2008)。薑黃素的生物效應。元培學報,15,1-10。
  59. 蘇柏駿(2012)。臺中,臺灣,國立中興大學食品暨應用生物科技學系。
  60. 龔吉宗(2011)。基隆,臺灣,國立台灣海洋大學食品科學系。
被引用次数
  1. 黃筱筑,江伯源(2019)。射頻處理參數應用於甘藷保存及其品質變化探討。臺灣農業化學與食品科學,57(1),11-21。