题名

果膠、幾丁聚醣、澱粉製備間質錠及其品質、緩釋效果評估

并列篇名

Prepare Matrix Tablets with Pectin, Chitosan and Starch, and Evaluation Their Quality and Sustained Release Effect

DOI

10.6578/TJACFS.201812_56(6).0001

作者

陳勁嘉(Chin-Chia Chen);江伯源(Po-Yuan Chiang)

关键词

低甲氧基果膠(LMP) ; 幾丁聚醣 ; 間質錠 ; 緩釋效果 ; Low methoxy pectin (LMP) ; Chitosan ; Matrix tablets ; Sustained release effect

期刊名称

臺灣農業化學與食品科學

卷期/出版年月

56卷6期(2018 / 12 / 01)

页次

147 - 159

内容语文

繁體中文

中文摘要

近年來保健食品消費市場日益增加,錠劑為其中一種劑型,如何透過不同配方、構型設計達到延緩釋放並且提升有效成分的利用是近期劑型開發的重點。本試驗分析低甲氧基果膠(LMP)、幾丁聚醣、澱粉及所製備間質錠之物性品質與體外模擬腸胃釋放及侵蝕試驗。試驗結果如下:作為錠劑賦形劑及崩散劑之幾丁聚醣、LMP粉末皆呈片狀,澱粉多為多角型顆粒,其製備錠劑重量介於0.36~0.41g、直徑介於9.63~9.68mm、厚度介於5.03~5.44mm;物性因子中,硬度以LMP/Starch間質錠4.00kgf最高;崩散時間以LMP/Chitosan間質錠36.58min最長,以100% Starch間質錠崩散時間5.57min最短;水活性以100% Starch間質錠0.26最高,磨損度(碎度)以LMP/Chitosan 1.17%最低,100%澱粉及LMP/Starch 2.23~2.27%最高。模擬腸胃道溶離,以100% Starch間質錠30分鐘以內皆崩散、溶解,而以100% LMP、LMP/Starch間質錠都超過兩小時後才溶解,此外,LMP/Chitosan及LMP/Starch/Chitosan溶離時間都超過24小時且錠劑外觀呈現膨脹,且隨著溶離的時間增加,其殘留質量(RM%)會遞減直至6-8小時才維持平衡,而膨潤力(SR%)會隨著溶離時間延長呈增加變化,約需6-8小時才有平緩的現象。本研究之間質錠在溶離時,會由低甲氧基果膠與鈣離子形成凝膠膜,以致具有緩釋效果。

英文摘要

In recent years, the market for health food has increased and tablets are one of them. Thus, it is imperative to promote quality control, quality assurance and enhancement of active ingredients present in these nutritional tablets using different formulae and configuration designs. We analyzed low-methoxy pectin (LMP), chitosan and starch in different mixing ratios to explore the optimized preparation of matrix tablets technology, its physical properties, and in vitro drug release and swelling tests in simulated gastrointestinal environment. As a tablet excipient and disintegrating agent, results showed that chitosan and LMP powder were in the form of flakes, while starch was mostly spherical. The tablets prepared weighed 0.36~0.41 g, had a diameter of 9.63~9.68 mm, and had a thickness of 5.03~5.44 mm. Among the physical factors, LMP/Starch matrix tablets were the hardest with hardness value of 4.00 kgf. Meanwhile, LMP/Chitosan matrix tablets had the longest disintegration time equal to 36.58 min while Starch matrix tablets had the shortest disintegration time of 5.57 min. LMP/Chitosan tablets also showed the lowest wear degree (fragmentation) equal to 1.17% while the 100% starch and LMP/Starch matrix tablets had the highest values, 2.23~2.27%. Finally, 100% starch tablets had a water activity of 0.26. Using the simulated gastrointestinal dissociation method, 100% Starch matrix tablets disintegrated and dissolved within 30 minutes, while 100% LMP, LMP/Starch tablets were dissolved for more than two hours. The dissociation time of LMP/Chitosan and LMP/Starch/Chitosan tablets exceeded 24 hours with their appearance showed expansion. As the dissociation time increases, the residual mass (RM%) will decrease until 6-8 hours and it will be balanced. While swelling power (SR%) will increase with the increase of dissociation time, and it will be smooth after 6-8 hours. It was observed in the current study that when the tablet was dissolved, a gel film formed due to the low methoxyl pectin and calcium ions; hence a sustained release effect was obtained.

主题分类 生物農學 > 農業
生物農學 > 森林
生物農學 > 畜牧
生物農學 > 漁業
生物農學 > 農產加工
工程學 > 化學工業
参考文献
  1. 施韋慈,江伯源(2017)。以玉米澱粉及海藻酸鈉混合模式評估凝膠晶球成型性及其釋放特性。臺灣農業化學與食品科學,55(3&4),189-201。
    連結:
  2. 許俊祥,江伯源(2017)。以果膠添加評估流動床造粒及沃斯特(Wurster)模式包覆對粉體品質及釋放特性之影響。臺灣農業化學與食品科學,55(3&4),202-213。
    連結:
  3. (1987).Encyclopedia of polymer science and engineering.New York:John Wiley and Sons.
  4. Bamba, M.,Puisieux, F.,Marty, J-P.,Carstensen, J.(1979).Release mechanisms in gelforming sustained release preparations.International Journal of Pharmaceutics,2(5-6),307-315.
  5. Benelli, L.,Cortés-Rojas, D.F.,Souza, C.R.F.,Oliveira, W.P.(2015).Fluid bed drying and agglomeration of phytopharmaceutical compositions.Powder Technology,273,145-153.
  6. Delmar, K.,Bianco-Peled, H.(2016).Composite chitosan hydrogels for extended release of hydrophobic drugs.Carbohydrate polymers,136,570-580.
  7. Devasenathipathy, R.,Karuppiah, C.,Chen, S.-M.,Mani, V.,Vasantha, V.S.,Ramaraj, S.(2015).Highly selective determination of cysteine using a composite prepared from multiwalled carbon nanotubes and gold nanoparticles stabilized with calcium crosslinked pectin.Microchimica Acta.,182(3-4),727-735.
  8. Hejazi, R.,Amiji, M.(2003).Chitosan-based gastrointestinal delivery systems.Journal of controlled release,89(2),151-165.
  9. Jabbal-Gill, I.,Fisher, A.N.,Rappuoli, R.,Davis, S.S.,Illum, L.(1998).Stimulation of mucosal and systemic antibody responses against Bordetella pertussis filamentous haemagglutinin and recombinant pertussis toxin after nasal administration with chitosan in mice.Vaccine,16(20),2039-2046.
  10. Komersová, A.,Lochař, V.,Myslíková, K.,Mužíková, J.,Bartoš, M.(2016).Formulation and dissolution kinetics study of hydrophilic matrix tablets with tramadol hydrochloride and different co-processed dry binders.European Journal of Pharmaceutical Sciences,95,36-45.
  11. Kyomugasho, C.,Christiaens, S.,Shpigelman, A.,Van Loey, A.M.,Hendrickx, M.E.(2015).FT-IR spectroscopy, a reliable method for routine analysis of the degree of methylesterification of pectin in different fruit-and vegetable-based matrices.Food Chemistry,176,82-90.
  12. Li, L.,Wang, L.,Shao, Y.,Ni, R.,Zhang, T.,Mao, S.(2013).Drug release characteristics from chitosan–alginate matrix tablets based on the theory of self-assembled film.International Journal of pharmaceutics,450(1-2),197-207.
  13. Rege, P.R.,Shukla, D.J.,Block, L.H.(1999).Chitinosans as tableting excipients for modified release delivery systems.International Journal of pharmaceutics,181(1),49-60.
  14. Sarmento, B.,Martins, S.,Ribeiro, A.,Veiga, F.,Neufeld, R.,Ferreira, D.(2006).Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers.International Journal of Peptide Research and Therapeutics,12(2),131-138.
  15. Varghese, S.,Ghoroi, C.(2017).Improving the wetting and dissolution of ibuprofen using solventless co-milling.International journal of pharmaceutics,533(1),145-155.
  16. Wang, X.,Chen, Q.,Lü, X.(2014).Pectin extracted from apple pomace and citrus peel by subcritical water.Food Hydrocolloids,38,129-137.
  17. 彭泓期(2018)。中興大學。
  18. 黃玉鈴(2015)。中興大學食品暨應用生物科技學系所。