题名

利用不同乾燥及微化處理探討大豆豆渣微粉品質差異分析

并列篇名

Effects of Drying and Micronization Treatment on Quality of Okara Flours

DOI

10.6578/TJACFS.202209_60(3).0001

作者

洪卉妤(Hui-Yu Hong);江伯源(Po-Yuan Chiang)

关键词

大豆豆渣 ; 大豆異黃酮 ; 射頻乾燥 ; 焙炒乾燥 ; 熱風乾燥 ; 冷凍乾燥 ; Okara ; Isoflavones ; Radio frequency drying ; Fry drying ; Hot air drying ; Freeze drying

期刊名称

臺灣農業化學與食品科學

卷期/出版年月

60卷3期(2022 / 09 / 01)

页次

73 - 84

内容语文

繁體中文

中文摘要

大豆豆渣(Okara)為製備豆漿之副產物,富含大量膳食纖維與多元營養成分,但水分含量高不易保存,大多以乾燥及微粉化加工處理,來延長貨架期與增加價值。本研究以高雄選10號大豆豆渣進行4, 5, 7 kV射頻乾燥(Radio frequency)、45, 55, 65℃熱風乾燥(Hot air drying)、150, 175, 200℃焙炒乾燥(Fry drying)與冷凍乾燥(Freeze drying)處理,水活性自0.96降至0.09~0.24。由結果發現乾燥大豆豆渣微觀構造以不同形態外觀特徵呈現(SEM),在不同粒徑乾燥大豆豆渣中,小於100 mesh之大豆豆渣微粉L*值顯著性增加、a*值與b*值均顯著性下降(p < 0.05),冷凍乾燥大豆豆渣保水力(7.53~9.42 g/g)、保油力(3.65~4.38 g/g)較其他乾燥處理有顯著性增加。進一步探討機能性成分含量,總多酚含量以200℃焙炒乾燥處理粒徑小於100 mesh的大豆豆渣最高(98.51 ± 2.56 μg GAE eq./10 g DW)、以4 kV射頻乾燥處理粒徑大於60 mesh的大豆豆渣以含量最低(9.11 ± 2.56 μg GAE eq./10 g DW),類黃酮含量以65℃熱風乾燥處理粒徑小於100 mesh的大豆豆渣微粉含量最高(8.43 ± 0.02 mg quercetin eq/g DW.)、以5 kV射頻乾燥處理粒徑大於60 mesh的大豆豆渣微粉最低(3.66 ± 0.01 mg quercetin eq/g DW.),大豆異黃酮中金雀異黃酮(Genistein)含量以冷凍乾燥處理粒徑小於100 mesh的大豆豆渣微粉有最高含量(22.57 ± 0.04 mg/50 g)、以5 kV射頻乾燥處理粒徑大於60 mesh的大豆豆渣微粉含量最低 (1.56 ± 0.61 mg/50 g),此研究可作為食品工業快速乾燥大豆豆渣及大豆豆渣微粉機能性成分加值技術之參考。

英文摘要

Okara is a by-product of soybean milk. It is a rich source of dietary fiber and had high nutritional value. However, due to its high content of moisture, okara is highly susceptible to deteriorate. Okara often be dried and micronized to prolong its shelf life and increase its value. The aim of this study, KSS 10 okara selected from Kaohsiung were used for 4, 5, and 7 kV radio frequency drying, 45, 55, 65℃ hot air drying, and 150, 175, 200℃ fry drying. In freeze-drying treatment, water activity decreased from 0.96 to 0.09-0.24. In the results, it is found that the microstructure of dried okara presents with different appearance characteristics (SEM). The colorimetry parameters of okara flours from different drying process and different particle diameters, the L* value of okara flour with <100 mesh was significantly increased, and the a* and b* values were significantly decreased ( p < 0.05). The water holding capacity (7.53-9.42 g/g) and oil binding capacity (3.65-4.38 g/g) shows significantly increased than other drying treatments. Moving on to describe in greater detail the content of functional components, the okara with fry drying 200℃ treatment in <100 mesh had the highest total polyphenol content (98.51 ± 2.56 μg GAE eq./10 g DW), and the 4 kV radio frequency okara in >60 mesh had the lowest content (9.11 ± 2.56 μg GAE eq./10 g DW). Besides, the okara with hot air 65℃ treatment in <100 mesh had the highest content flavonoid (8.43 ± 0.02 mg quercetin eq/g DW.), and with 5 kV radio frequency treatment in >60 mesh had the lowest content (3.66 ± 0.01 mg quercetin eq/g DW.). In the isoflavone analysis, the okara with freeze drying treatment in <100 mesh had the highest content of Genistein (2.57 ± 0.04 mg/50g) and the okara with 5 kV radio frequency drying treatment in >60 mesh had the lowest content of Genistein (1.56 ± 0.61 mg/50g). This work can be used as a reference for micronized okara as a value-added products and provide a fast-drying okara technology in the food industry.

主题分类 生物農學 > 農業
生物農學 > 森林
生物農學 > 畜牧
生物農學 > 漁業
生物農學 > 農產加工
工程學 > 化學工業
参考文献
  1. 陳彥卉,嚴玉芬,陳淑德(2017)。射頻乾燥黃豆渣之研究。Taiwanese Journal of Agricultural Chemistry & Food Science,55
    連結:
  2. Adabi, E. M.,Motevali, A.,Nikbakht, A. M.,Khoshtaghaza, H. M.(2013).Investigation of some pretreatments on energy and specific energy consumption drying of black mulberry.Chemical Industry and Chemical Engineering Quarterly/CICEQ,19(1),89-105.
  3. Baiano, A.,Terracone, C.,Gambacorta, G.,La Notte, E.(2009).Evaluation of isoflavone content and antioxidant activity of soy‐wheat pasta.International Journal of Food Science & Technology,44(7),1304-1313.
  4. Boge, E. L.,Boylston, T. D.,Wilson, L. A.(2009).Effect of cultivar and roasting method on composition of roasted soybeans.Journal of the Science of Food and Agriculture,89(5),821-826.
  5. Brooker, D. B.,Bakker-Arkema, F. W.,Hall, C. W.(1992).Drying and storage of grains and oilseeds.Springer Science & Business Media.
  6. Brouns, F.(2002).Soya isoflavones: a new and promising ingredient for the health foods sector.Food Research International,35(3),187-193.
  7. Cadden, A. M.(1987).Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers.Journal of Food Science,52(6),1595-1599.
  8. Calín-Sánchez, Á.,Lipan, L.,Cano-Lamadrid, M.,Kharaghani, A.,Masztalerz, K.,Carbonell-Barrachina, Á. A.,Figiel, A.(2020).Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs.Foods,9(9),1261.
  9. Chau, C. F.,Huang, Y. L.(2004).Characterization of passion fruit seed fibres—a potential fibre source.Food Chemistry,85(2),189-194.
  10. Chen, P. C.,Lin, C.,Chen, M. H.,Chiang, P. Y.(2020).The micronization process for improving the dietary value of okara (soybean residue) by planetary ball milling.LWT,132,115-128.
  11. Cui, G.,Cao, Y.,Pang, S.(2005).Experimental study of okara drying with high-voltage electric field.J. Taishan Univ,27(6),73-75.
  12. Dos Santos, D. C.,de Oliveira Filho, J. G.,de Santana Silva, J.,de Sousa, M. F.,da Silva Vilela, M.,da Silva, M. A. P.,Egea, M. B.(2019).Okara flour: its physicochemical, microscopical and functional properties.Nutrition & Food Science,49(6),1252-1264.
  13. Drakos, A.,Kyriakakis, G.,Evageliou, V.,Protonotariou, S.,Mandala, I.,Ritzoulis, C.(2017).Influence of jet milling and particle size on the composition, physicochemical and mechanical properties of barley and rye flours.Food Chemistry,215,326-332.
  14. Fan, X.,Li, S.,Zhang, A.,Chang, H.,Zhao, X.,Lin, Y.,Feng, Z.(2021).Mechanism of change of the physicochemical characteristics, gelation process, water state, and microstructure of okara tofu analogues induced by highintensity ultrasound treatment.Food Hydrocolloids,111,226-234.
  15. Guimaraes, R. M.,Ida, E. I.,Falcao, H. G.,de Rezende, T. A. M.,de Santana Silva, J.,Alves, C. C. F.,Egea, M. B.(2020).Evaluating technological quality of okara flours obtained by different drying processes.LWT,123,213-221.
  16. Guimarães, R. M.,Silva, T. E.,Lemes, A. C.,Boldrin, M. C. F.,da Silva, M. A. P.,Silva, F. G.,Egea, M. B.(2018).Okara: A soybean by-product as an alternative to enrich vegetable paste.LWT,92,593-599.
  17. He, S.,Tang, M.,Sun, H.,Ye, Y.,Cao, X.,Wang, J.(2019).Potential of water dropwort (Oenanthe javanica DC.) powder as an ingredient in beverage: Functional, thermal, dissolution and dispersion properties after superfine grinding.Powder Technology,353,516-525.
  18. Hertog, M. G.,Hollman, P. C.,Katan, M. B.(1992).Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands.Journal of Ggricultural and Food Chemistry,40(12),2379-2383.
  19. Hnin, K. K.,Zhang, M.,Mujumdar, A. S.,Zhu, Y.(2018).Emerging food drying technologies with energy-saving characteristics: A review.Drying Technology
  20. Hou, H.,Chang, K.(2002).Interconversions of isoflavones in soybeans as affected by storage.Journal of Food Science,67(6),2083-2089.
  21. Hsia, S. Y.,Hsiao, Y. H.,Li, W. T.,Hsieh, J. F.(2016).Aggregation of soy protein-isoflavone complexes and gel formation induced by glucono-δ-lactone in soymilk.Scientific reports,6,35718.
  22. Kamble, D. B.,Rani, S.(2020).Bioactive components, in vitro digestibility, microstructure and application of soybean residue (okara): A review.Legume Science,2(1),e32.
  23. Kang, M. J.,Bae, I. Y.,Lee, H. G.(2018).Rice noodle enriched with okara: Cooking property, texture, and in vitro starch digestibility.Food bioscience,22,178-183.
  24. Kurek, M. A.,Sokolova, N.(2019).Optimization of bread quality with quinoa flour of different particle size and degree of wheat flour replacement.Food Science and Technology,40,307-314.
  25. Lee, D. P. S.,Gan, A. X.,Kim, J. E.(2020).Incorporation of biovalorised okara in biscuits: Improvements of nutritional, antioxidant, physical, and sensory properties.LWT,134,124-132.
  26. Li, B.,Qiao, M.,Lu, F.(2012).Composition, nutrition, and utilization of okara (soybean residue).Food Reviews International,28(3),231-252.
  27. Li, S.,Zhu, D.,Li, K.,Yang, Y.,Lei, Z.,Zhang, Z.(2013).Soybean curd residue: Composition, utilization, and related limiting factors.ISRN Industrial Engineering,2013,1-8.
  28. Liu, C. M.,Liang, R. H.,Dai, T. T.,Ye, J. P.,Zeng, Z. C.,Luo, S. J.,Chen, J.(2016).Effect of dynamic high pressure microfluidization modified insoluble dietary fiber on gelatinization and rheology of rice starch.Food Hydrocolloids,57,55-61.
  29. Lu, F.,Cui, Z.,Liu, Y.,Li, B.(2013).The effect of okara on the qualities of noodle and steamed bread.Advance Journal of Food Science and Technology,5(7),960-968.
  30. Lu, F.,Liu, Y.,Li, B.,Sun, M.(2014).Effect of particle size and addition of okara on physicochemical properties of wheat flour.Soybean Science,33(1),103-106.
  31. Marra, F.,Zhang, L.,Lyng, J. G.(2009).Radio frequency treatment of foods: Review of recent advances.Journal of Food Engineering,91(4),497-508.
  32. Ming, J.,Chen, L.,Hong, H.,Li, J.(2015).Effect of superfinegrinding on the physico‐chemical, morphological and thermogravimetric properties of Lentinus edodes mushroom powders.Journal of the Science of Food and Agriculture,95(12),2431-2437.
  33. Muliterno, M. M.,Rodrigues, D.,de Lima, F. S.,Ida, E. I.,Kurozawa, L. E.(2017).Conversion/degradation of isoflavones and color alterations during the drying of okara.LWT,75,512-519.
  34. Ostermann-Porcel, M. V.,Rinaldoni, A. N.,Campderrós, M. E.,Gómez, M.(2020).Evaluation of gluten-free layer cake quality made with okara flour.Journal of Food Measurement and Characterization,1-9.
  35. Ostermann‐Porcel, M. V.,Rinaldoni, A. N.,Rodriguez‐Furlán, L. T.,Campderrós, M. E.(2017).Quality assessment of dried okara as a source of production of gluten‐free flour.Journal of the Science of Food and Agriculture,97(9),2934-2941.
  36. Perussello, C. A.,Camargo do Amarante, A. C.,Mariani, V. C.(2009).Convective drying kinetics and darkening of okara.Drying technology,27(10),1132-1141.
  37. Riva, M.,Schiraldi, A.,Di Cesare, L.(1991).Drying of Agaricus bisporus mushrooms by microwave-hot air combination.Lebensmittel Wissenschaft Technologie,24(6),479-483.
  38. Rosa-Sibakov, N.,Sibakov, J.,Lahtinen, P.,Poutanen, K.(2015).Wet grinding and microfluidization of wheat bran preparations: Improvement of dispersion stability by structural disintegration.Journal of Cereal Science,64,1-10.
  39. Roshanak, S.,Rahimmalek, M.,Goli, S. A. H.(2016).Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves.Journal of Food Science and Technology,53(1),721-729.
  40. Sangnark, A.,Noomhorm, A.(2004).Chemical, physical and baking properties of dietary fiber prepared from rice straw.Food Research International,37(1),66-74.
  41. Shen, Y.,Zheng, L.,Gou, M.,Xia, T.,Li, W.,Song, X.,Jiang, H.(2020).Characteristics of pitaya after radio frequency treating: Structure, phenolic compounds, antioxidant, and antiproliferative activity.Food and Bioprocess Technology,13(1),180-186.
  42. Sun, H.,Yuan, X.,Zhang, Z.,Su, X.,Shi, M.(2018).Thermal processing effects on the chemical constituent and antioxidant activity of okara extracts using subcritical water extraction.Journal of Chemistry
  43. Tang, Z.,Fan, J.,Zhang, Z.,Zhang, W.,Yang, J.,Liu, L.,Zeng, X.(2021).Insights into the structural characteristics and in vitro starch digestibility on steamed rice bread as affected by the addition of okara.Food Hydrocolloids,113,106533.
  44. Vong, W. C.,Liu, S. Q.(2018).Bioconversion of green volatiles in okara (soybean residue) into esters by coupling enzyme catalysis and yeast (Lindnera saturnus) fermentation.Applied microbiology and biotechnology,102(23),10017-10026.
  45. Wang, H. J.,Murphy, P. A.(1996).Mass balance study of isoflavones during soybean processing.Journal of Agricultural and Food Chemistry,44(8),2377-2383.
  46. Xu, F.,Jin, X.,Zhang, L.,Chen, X. D.(2017).Investigation on water status and distribution in broccoli and the effects of drying on water status using NMR and MRI methods.Food Research International,96,191-197.
  47. Xu, Y.,Xiao, Y.,Lagnika, C.,Song, J.,Li, D.,Liu, C.,Jiang, N.,Zhang, M.,Duan, X.(2020).A comparative study of drying methods on physical characteristics, nutritional properties and antioxidant capacity of broccoli.Drying Technology,38(10),1378-1388.
  48. Zhang, L. H.,Li, S. F.(2009).Effects of micronization on properties of Chaenomeles sinensis (Thouin) Koehne fruit powder.Innovative Food Science & Emerging Technologies,10(4),633-637.
  49. Ziegler, V.,Vanier, N. L.,Ferreira, C. D.,Paraginski, R. T.,Monks, J. L. F.,Elias, M. C.(2016).Changes in the bioactive compounds content of soybean as a function of grain moisture content and temperature during long‐term storage.Journal of Food Science,81(3),762-768.