题名

A Symbolic Time-series Data Mining Framework for Analyzing Load Profiles of Electricity Consumption

并列篇名

基於符號化時間序列資料探勘架構之電力消耗負載分析

DOI

10.6182/jlis.2017.15(2).021

作者

吳怡瑾(I-Chin Wu);陳子立(Tzu-Li Chen);洪冠群(Guan-Qun Hong);陳彥銘(Yen-Ming Chen);劉子吉(Tzu-Chi Liu)

关键词

Electricity Load Profiling ; Piecewise Aggregate Approximation ; Symbolic Aggregate Approximation ; Time-series Data Mining ; 電力負載曲線 ; 分段聚合近似法 ; 聚合近似演算法 ; 時間序列資料探勘

期刊名称

圖書資訊學刊

卷期/出版年月

15卷2期(2017 / 12 / 01)

页次

21 - 44

内容语文

英文

中文摘要

Electricity is critical for industrial and economic advancement, as well as a driving force for sustainable development. In turn, reducing energy consumption for sustainability and both tracking and managing energy efficiently have become critical challenges. In this research, we analyzed electricity consumption from the perspective of load profiling, which charts variations in electrical load during a specified period in order to track energy consumption of an annealing furnace in a co-operating steel forging plant. We made a preliminary proposal to use a symbolic time-series data mining framework for electricity consumption analysis. First, we adopted a piecewise aggregate approximation (PAA) approach to perform dimension reduction. Then, we refined the distance measure of the symbolic aggregate approximation (SAX) algorithm. SAX is a symbolic representation of time-series for dimensionality reduction and indexing with a lower-bounding distance measure. Our experimental results showed that the dimension reduction method known as PAA can better detect the state of the annealing furnace compared to the fixed feature point (FFP) method. In addition, the refined lower-bounding distance measure proved to be better than the traditional measure for calculating the similarity between energy load profiles. The results can help the plant conduct further normal and abnormal electricity pattern detection.

英文摘要

能源在永續發展工業已被視為重要的管理資產,因此,如何減少能源消耗並有效率地追蹤及管理能源為重要的挑戰。本研究基於電力負載追蹤電力消耗狀況提出符號化時間序列電力資料探勘架構,首先,研究應用分段聚合近似法(piecewise aggregate approximation, PAA)進行時間序列降維處理,接著採用符號聚合近似演算法(symbolic aggregate approximation, SAX)將降維後序列進行符號化,並改良SAX演算法的時間序列下限制(lower-bounding)距離衡量計算公式。研究以鋼鐵鍛造公司的大型退火爐為例進行方法驗證,實驗結果顯示採用PAA法較傳統的固定端點取法較能預測機器狀況;另一實驗結果顯示改良SAX之下限制距離公式能更準確地計算負載曲線之間的相似度。本研究所提出之架構與方法將有助於工廠進行後續正異常電力樣式預測。

主题分类 人文學 > 圖書資訊學
参考文献
  1. Ministry of Economic Affairs, Bureau of Energy. (2017). Electricity consumption. Retrieved from http://web3.moeaboe.gov.tw/ecw/populace/web_book/WebReports.aspx?book=M_CH&menu_id=142
  2. Aßfalg, J.,Kriegel, H.-P.,Kröger, P.,Kunath, P.,Pryakhin, A.,Renz, M.(2006).Similarity search on time series based on threshold queries.Lecture Notes in Computer Science: Vol. 3896. Advances in Database Technology-EDBT 2006,Berlin, Germany:
  3. Berndt, D. J.,Clifford, J.(1994).Using dynamic time warping to find patterns in time series.Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining,USA:
  4. Berrar, D. P.(Ed.),Dubitzky, W.(Ed.),Granzow, M.(Ed.)(2003).A practical approach to microarray data analysis.Norwell, MA:Kluwer.
  5. Chakrabarti, K.,Keogh, E.,Mehrotra, S.,Pazzani, M.(2002).Locally adaptive dimensionality reduction for indexing large time series databases.ACM Transactions on Database Systems,27(2),188-228.
  6. Chan, K. A.,Fu, W. C.(1999).Efficient time series matching by wavelets.Proceed ings o f the 15th International Conference on Data Engineering,Los Alamitos, CA:
  7. Chen, L.,Ng, R.(2004).On the marriage of Lp-norms and edit distance.Proceedings of the Thirtieth International Conference on Very Large Data Bases,San Francisco, CA:
  8. Chen, L.,Özsu, M. T.,Oria, V.(2005).Robust and efficient similarity search for moving object trajectories.Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data,New York, NY:
  9. Chen, Q.,Chen, L.,Lian, X.,Liu, Y.,Yu, J. X.(2007).Indexable PLA for efficient similarity search.Proceedings of the 33rd International Conference on Very Large Data Bases,New York, NY:
  10. Chen, Y.,Nascimento, M. A.,Ooi, B. C.,Tung, A. K. H.(2007).SpADe: On shapebased pattern detection in streaming time series.Proceedings of the 23th International Conference on Data Engineering,Turkey:
  11. Ding, H.,Trajcevski, G.,Scheuermann, P.,Wang, X.,Keogh, E.(2008).Querying and mining of time series data: Experimental comparison of representations and distance measures.Proceedings of the VLDB Endowment,1(2),1542-1552.
  12. Faloutsos, C.,Ranganathan, M.,Manolopoulos, Y.(1994).Fast subsequence matching in time-series databases.Proceedings of the 1994 ACM International Conference on Management of Data,New York, NY:
  13. Han, J.,Kamber, M.,Pei, J.(2011).Data mining: Concepts and techniques.Waltham, MA:Morgan Kaufmann.
  14. Keogh, E.,Chakrabarti, K.,Pazzani, M.,Mehrotra, S.(2001).Dimensionality reduction for fast similarity search in large time series databases.Knowledge and Information Systems,3(3),263-286.
  15. Keogh, E.,Pazzani, M. J.(2000).A simple dimensionality reduction technique for fast similarity search in large time series databases.Lecture Notes in Computer Science: Vol. 1805. Knowledge Discovery and Data Mining. Current Issues and New Applications,Berlin, Germany:
  16. Keogh, E.,Ratanamahatana, C. A.(2005).Exact indexing of dynamic time warping.Knowledge and Information Systems,7(3),358-386.
  17. Kitagawa, G.(2010).Introduction to time series modeling.Boca Raton, FL:CRC Press.
  18. Kleist, C.(2015).Germany,Humboldt-Universitat zu Berlin.
  19. Le, C. V.,Pang, C. K.,Gan, O. P.,Chee, X. M.,Zhang, D. H.,Luo, M.,Lewis, F. L.(2012).Classification of energy consumption patterns for energy audit and machine scheduling in industrial manufacturing systems.Transactions of the Institute of Measurement and Control,35(5),583-592.
  20. Lin, J.,Keogh, E.,Lonardi, S.,Chiu, B.(2003).A symbolic representation of time series, with implications for streaming algorithms.Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery,New York, NY:
  21. Lin, J.,Keogh, E.,Wei, L.,Lonardi, S.(2007).Experiencing SAX: A novel symbolic representation of time series.Data Mining and Knowledge Discovery,15(2),107-144.
  22. McLoughlin, F.,Duffy, A.,Conlon, M.(2015).A clustering approach to domestic electricity load profile characterization using smart metering data.Applied Energy,141,190-199.
  23. Mörchen, F.(2006).Germany,Philipps-Universitat Marburg.
  24. Nath, H.,Baruah, U.(2014).Evaluation of lower bounding methods of dynamic time warping (DTW).International Journal of Computer Applications,94(20),12-17.
  25. Popeangă, J.(2015).Data mining smart energy time series.Database Systems Journal,6(1),14-22.
  26. Sakurai, Y.,Yamamuro, M.,Faloutsos, C.(2015).Mining and forecasting of big time-series data.Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,New York, NY:
  27. Vikhorev, K.,Greenough, R.,Brown, N.(2013).An advanced energy management framework to promote energy awareness.Journal of Cleaner Production,43,103-112.
  28. Vlachos, M.,Kollios, G.,Gunopulos, D.(2002).Discovering similar multidimensional trajectories.Proceedings of IEEE the 18th Internat ional Conference on Data Engineering,Los Alamitos, CA:
  29. Yi, B. K.,Jagadish, H. V.,Faloutsos, C.(1998).Efficient retrieval of similar time sequences under time warping.Proceedings of the 14th International Conference on Data Engineering,USA: