题名

消費金融無擔保客戶違約協商後毀諾-資料探勘技術之應用

并列篇名

A Study on Default after Debt Negotiation of Unsecured Loans of Consumer Finance-Data Mining Approach

DOI

10.6985/TBFQ.201103.0041

作者

劉立倫(Li-Lun Liu);葉宣萱(Hsuan-Hsuan Yeh)

关键词

債務違約協商 ; 協商後毀諾 ; 資料探勘技術 ; 決策樹模式 ; 類神經網路 ; negotiation on trouble debt restructuring ; default after Negotiation ; Data Mining Technique ; Decision Tree Approach ; Artificial Neural Network

期刊名称

台灣金融財務季刊

卷期/出版年月

12卷1期(2011 / 03 / 01)

页次

41 - 74

内容语文

繁體中文

中文摘要

2005年底爆發卡債風暴後,銀行業受卡債風暴衝擊,信用卡、現金卡及個人信用貸款總體業績呈直線下滑;金管會與銀行公會便於2006年推行「消費金融無擔保債務協商機制」。「協商」原在協助銀行確認風險來源,並協助客戶還款;然「協商」程序也極耗成本及時間,且客戶申請協商後能夠正常履約者,所佔比率亦低。故本研究希望以資料探勘(Data Mining)建構模型,區別違約協商後毀諾的客戶與正常繳款客戶,以提升銀行成本與人力的使用效能。 研究中採用「決策樹」、「類神經」二種模式進行探討。結果發現在訓練集上,模式準確率上,以「類神經」的96.07%為最優,次為「決策樹」92.94%;而在測試值上以「決策樹」92.53%較佳,次為「類神經」92.47%。研究中亦以傳統的「區別分析」進行比較,結果發現其準確度分別為75.15%、75.14%,準確率與資料探勘技術差異甚大。以模糊矩陣得分值的結果進行比較,亦顯示「決策樹」與「類神經」的結果,遠較「區別分析」的得分值為佳。鑑於三種模式都選取了債務協商後的相關變數,如利率、失業率、正常繳款6個月及協商註記等;因此,銀行對於消費金融無擔保戶的信用狀態,應結合動態的後續管理與信用調整措施,才能有效管理授信風險。

英文摘要

At the end of year 2005, the banking sector were severely affected by the outbreak of credit card debt crisis, and the performance of most banks in credit cards, cash cards and personal credit loans were declined significantly. The Financial Supervisory Commission and the Bank Association then jointly promote and implement the ”Consumer Finance Unsecured Debt Negotiation Mechanism” in year 2006 to help banks identifying its source of risk and assisting default clients to repay their debt. However, Negotiation process is also extremely cost and time consuming, and in reality, the percentage of normally repay clients to the total negotiating clients is also relatively low. In order to help banks enhance the performance of human resource and decrease the operation cost, this study adopt Data Mining Techniques (DMT) to construct the prediction model to discriminate the client repay its debt normally from the client fail to fulfill its obligation after negotiation. In this study, ”Decision Tree Approach” (DTA) and ”Neural Network Approach” (NNA) were used to establish the prediction models and test the relative performance of different models. The results demonstrated that, on the relative accuracy rate of training set, 96.07% of accuracy rate of NNA is far better than the 92.94% of DTA; and for the testing set, 92.53% of accuracy rate of DTA is relatively higher than the 92.47% of NNA, both accuracy rates were over 90%. We also adopted traditional ”Multivariate Difference Analysis” (MDA) to compare the performance with two DMT approaches, the accuracy rate were only 75.15% and 75.14%, respectively, in both training set and testing set, significantly lower than the performance of DMT approaches. Scores of fuzzy matrix from the different models were also calculated; and the results suggested that the performance of DTA and NNA are superior to the performance of MDA model. The variables such as interest rate, unemployment rate, debt repays over 6 months and negotiation remark, etc., which selected in three models, also suggest that bank should apply more dynamic credit risk management and follow-up adjustment measures to monitor the credit status of unsecured client of consumer financing.

主题分类 社會科學 > 經濟學
社會科學 > 財金及會計學
参考文献
  1. 謝邦昌(2003),「簡介Data Mining」,http://cdms.stat.fju.edu.tw/。
  2. 中央銀行(2009),金融統計月報,2009 年7月。
  3. 中華民國銀行公會,「無擔保債務協商相關統計資料」,http://www.ba.org.tw/ExpenditureFinanceDebtChk.aspx。
  4. Abinzano, I.,Muga, L.,Santamaria, R.(2010).Is the Momentum Effect Exclusive of High Default Risk Firms?.Journal of Finance and Accounting,39(147),445-470.
  5. Agarwal, S.,Chomsisengphet, S.,Liu, C.(2010).The Importance of Adverse Selection in the Credit Card Market: Evidence from Randomized Trials of Credit Card Solicitations.Journal of money credit and banking,42(4),743-754.
  6. Alexandru, C.(2008).Risk management- Data issues with Risks Estimation in Consumer Credit.Annals of the University of Oradea: Economic Science Series,17(4),176-178.
  7. Chen, M. C.,Huang, S. H.(2003).Credit Scoring and Rejected Instances Reassigning Through Evolutionary Computation Techniques.Expert Systems with Applications,24,433-441.
  8. Chye, K.,Chin, T.,Peng, G.(2004).Credit Scoring Using Data Mining Techniques.Singapore Management Review,26(2),25-47.
  9. Duffie, D.,Saita, L.,Wang, K.(2007).Multi-Period Corporate Default Prediction with Stochastic Covariates.Journal of Financial Economics,83(3),635-665.
  10. Elliehausen, G.,Lundquist, E. C.,Staten, M. E.(2007).The Impact of Credit Counseling on Subsequent Borrower Behavior.Journal of Consumer Affairs,41(1),1-28.
  11. Fung, T. K.,Wang, M. C. S.(2003).Modeling Credit Card Charge-off Ratios- The Case of Hong Kong.Southern Economic Journal,70(1),128-140.
  12. Guo, W.,Cao, M.,Gong, K.(2009).The Comparative Study on Credit Risk Evaluation Models of Real-estate for Chinese Commercial Banks.International Management Review,5(2),96-102.
  13. Hornik, K.,Stinchcombe, M.,White, H.(1989).Multilayer feedforward networks e Universal Approximations.Neural Networks,2,336-359.
  14. Hsieh, N.(2004).An Integrated Data Mining and Behavioral Scoring Model for Analyzing Bank Customers.Expert Systems with Applications,27,623-633.
  15. Huang, F.,Sheng, Y.,Li, Z.(2010).Evaluation of Default Risk Based on KMV Model for ICBC, CCB and BOC.International Journal of Economics and Finance,2(1),72-80.
  16. Karlan, D.,Zinman, J.(2009).Observing Unobservables: Identifying Information Asymmetries With a Consumer Credit Field Experiment.Econometrica,77(6),1993-2008.
  17. Konovalova, N.(2009).Problems of the evaluation of credit risk in commercial banks.Journal of Business Management,2,85-92.
  18. Lyons, A. C.,Rachlis, M.,Scherpf, E.(2007).What's in a Score? Differences in Consumers' Credit Knowledge Using OLS and Quantile Regressions.Journal of Consumer Affairs,41(2),223-249.
  19. Malik, M.,Thomas, L. C.(2010).Modelling credit Risk of Portfolio of Consumer Loans.Journal of the Operational Research Society,61(3),411-420.
  20. Matoussi, H.,Abdelmoula, A. K.(2010).Credit-Risk Evaluation of a Tunisian Commercial Bank: Logistic Regression vs. Neural Network Modeling.Accounting and ManagementInformation Systems / Contabilitate si Informatica de Gestiune,9(1),92-119.
  21. Minna, A.,Wilska, T.,Kaartinen, R.,Lhteenmaa, J.(2009).The Use of Small Instant Loans Among Young Adults–a Gateway to a Consumer Insolvency?.International Journal of Consumer Studies,33(4),407-415.
  22. Muniz de Andrade, F. W.,Thomas, L.(2007).Structural models in consumer credit.European Journal of Operational Research,183(3),1569-1581.
  23. O''Neill, B.(2010).Consumer Credit: A Primer for Financial Service Professionals and Their Clients.Journal of Financial Service Professionals,64(5),56-69.
  24. Tang, L.,Thomas, L. C.,Thomas, S.,Bozzetto, J-F.(2007).It's the economy stupid: Modelling financial product purchases.International Journal of Bank Marketing,25,22-38.
  25. Two Crows Corporation(1999).Introduction to Data Mining and Knowledge Discovery.Potomac, MD:Two Crows Corporation.
  26. Umberto, F.,Gianni, N.(2010).The Role of Self-Accounting and Financial Capability in Consumer Credit Decisions.Journal of Modern Accounting and Auditing,6(2),43-58.
  27. Xiao, J.,Wu, J.(2008).Completing Debt Management Plans in Credit Counseling: An Application of the Theory of Planned Behavior.Financial Counseling and Planning,19(2),29-45.
  28. Zekic-Susac, M.,Sarlija, N.,Bensic, M.(2004).Small Business Credit Scoring: A Comparison of Logistic Regression, Neural Network, and Decision Tree Models.26th International Conference on Information Technology Interfaces
  29. Zhang, D.,Zhou, L.(2004).Discovering Golden Nuggets: Data Mining in Financial Application.IEEE Transactions on system,34(4),513-522.
  30. Zhang, G.,Patuwo, B. E.,Hu, M. Y.(1998).Forecasting with Artificial Neural Networks: The State of the Art.International Journal of Forecasting,14(1),35-62.
  31. 余適銘(2004)。碩士論文(碩士論文)。政治大學經營管理所。
  32. 宋雅蓉(2007)。碩士論文(碩士論文)。東吳大學會計研究所。
  33. 林妙雀、酈芃羽(2005)。影響量販店與百貨公司消費者購買決策因素之研究─以基因演算法最佳化類神經網路模式加以驗證。管理科學學報,2(1),57-77。
  34. 林俊吉(2001)。碩士論文(碩士論文)。中山大學財務管理研究所。
  35. 林勉今(2003)。碩士論文(碩士論文)。大同大學事業經營研究所。
  36. 林靜婉(2006)。碩士論文(碩士論文)。中華大學資訊管理研究所。
  37. 張傑翔(2006)。碩士論文(碩士論文)。華梵大學資訊管理研究所。
  38. 張斐章、張麗秋(2006)。類神經網路。東華書局股份有限公司。
  39. 張麗娟(2002)。消費金融趨勢對銀行經營管理之影響─中日銀行業比較。企銀季刊,25(4),35-51。
  40. 陳克劼、李有豐(2009)。類神經網路分析應用於北部省道橋梁檢測及劣化預測之研究。臺灣公路工程,35(1),2-20。
  41. 陳凌瑤(2003)。碩士論文(碩士論文)。中國文化大學會計研究所。
  42. 陳龍泉(2006)。碩士論文(碩士論文)。臺灣大學財務金融研究所。
  43. 傅成仕(2003)。國內消費金融業務發展的探討。今日合庫,344,4-23。
  44. 黃國偉(2003)。碩士論文(碩士論文)。國立成功大學。
  45. 溫國恩(2009)。我國消費金融業務之現況與展望。臺灣經濟金融月刊,45(2),16-27。
  46. 詹惠如(2003)。碩士論文(碩士論文)。東吳大學會計研究所。
  47. 劉書汎(2009)。碩士論文(碩士論文)。朝陽科技大學財務金融研究所。
  48. 劉敬祥(2007)。碩士論文(碩士論文)。世新大學財務金融研究所。
  49. 蔡介文(2007)。碩士論文(碩士論文)。臺灣大學法律學研究所。
  50. 蔡明憲(2001)。碩士論文(碩士論文)。中山大學財務管理研究所。
  51. 戴文彬(2003)。碩士論文(碩士論文)。中央大學財務金融學系暨研究所。
  52. 戴堅(2004)。碩士論文(碩士論文)。中正大學國際經濟研究所。
  53. 謝邦昌(2001)。資料採礦入門及應用—從統計技術看資料採礦。資商訊息顧問有限公司。
  54. 羅華強(2001)。類神經網路—MATLAB 的應用。新竹:清蔚科技。
  55. 蘇益裕(2006)。碩士論文(碩士論文)。高雄第一科技大學財務管理研究所。
  56. 鐘正良(1996)。碩士論文(碩士論文)。政治大學統計研究所。