题名

整合小波轉換與神經網路於金融投資決策時間序列預測之研究

并列篇名

Integrating Wavelet Transform and Neural Network in Time Series Forecasting for Financial Investment Strategies

DOI

10.6382/JIM.200401.0139

作者

陳安斌(An-Pin Chen);許育嘉(Yu-Chia Hsu)

关键词

投資決策 ; 小波轉換 ; 神經網路 ; 時間序列 ; 股市預測 ; Investment Decision ; Wavelet Transform ; Neural Network ; Time Series ; Stock Forecasting

期刊名称

資訊管理學報

卷期/出版年月

11卷1期(2004 / 01 / 01)

页次

139 - 165

内容语文

繁體中文

中文摘要

傳統時間序列的分析,通常都植基於機率與統計學,並假設資料的性質是定性(stationary)和線性(linear)的。但是當系統動態呈現高度非線性並伴隨著非定性(non-stationary)時,這些傳統模型的適用性及準確性可能無法滿足研究的需求。因此本研究提出了『小波神經網路多尺度解析混合預測模型』,可適用於非定性時間序列之分析與預測。利用小波分解具有處理混沌訊號的能力,將原始時間序列分解成多個解析尺度之子序列,再結合具有廣域函數逼近能力之小波神經網路架構,建構出時間序列混合預測模型。期望能在處理非定性時間序列分析時,不受限於傳統模型之假設條件,且能準確地預測。研究中並以台灣證券交易所發行量加權股價指數為實例,應用於一日及五日之收盤價與價格變化率預測,且與傳統自回歸模型以及未經小波分解步驟之小波神經網路模型之預測結果做比較。研究的結果顯示,『小波神經網路多尺度解析混合預測模型』可準確地預測非定性時間序列,其預測結果較前兩者比較模型準確,並具有參考價值可提供制訂決策之參考。

英文摘要

Traditional time series analysis methodologies are based on probability and statistics with the assumption of stationary and linear properties. However, the system dynamic of time series usually arise with highly nonlinear and non-stationary properties, these conventional time series forecasting models cannot satisfy the feasibility and accuracy of which research desires. Consequently, the ”multi-resolution wavelet neural network hybrid forecasting model,” capable of adaptive forecasting non-stationary time series, is proposed in this research. The original time series is decomposed into subsequences in different resolution scale using the wavelet decomposition, which is efficient in processing chaotic signals. Furthermore, combined with the wavelet neural network architecture, which is referred to an universal function approximator, to establish the time series forecasting model, and expect this model to predict accurately and conquer the restriction of the traditional models when encounter non-stationary time series. The TAIEX of Taiwan stock market index is used for one and five day ahead forecasting of close price and price change to demonstrate the proposed model. Two other forecast results, one is obtained from traditional autoregressive model, and the other is without using the wavelet decomposition, were also used to compare with the proposed model. The experimental results indicate that the multi-resolution wavelet neural network hybrid forecasting model can accurately predict non-stationary financial time series and provide a valuable reference for making investing decision.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Assume, Alex, Campbell, Jonathan,Murtagh, Fionn(1998).Journal of computational intelligence in finance.
  2. Baba, Norio,Kozaki, Motokazu(1992).An Intelligent Forecasting System of Stock Price Using Neural Networks.IJCNN,1
  3. Bjorn, V.(1995).Computational Intelligence for Financial Engineering,Proceedings of the IEEE/IA FE 1995.
  4. Cao, Liangyue, Hong, Yiguang, Fang, Haiping,,He, Guowei(1995).Predicting chaotic time series with wavelet networks.Physica D,1(2),225-238.
  5. Cao, Liangyue, Hong, Yiguang, Zhao, Hanzhang,Deng, Shuhui(1996).Predicting economic time series using a nonlinear deterministic technique.Computational economics,9,149-178.
  6. Ciuca, I.,Ware, J. A.(1997).The 6th International Conference on Emerging Technologies and Factory Automation Proceedings.
  7. Cristea, Paul, Tuduce, Rodica,Cristea, Alexandra(2000).5th Seminar on Neural Network Applications in Electrical Engineering.
  8. Delurgio, Stephen A.(1997).Forecasting, principles, and application.McGraw-Hill.
  9. Geva, Amir B.(1998).IEEE transactions on neural networks.
  10. Gonghui, Zheng, Starck, Jean-Luc, Campbell, Jonathan,Murtagh, Fionn(1999).Journal of computational intelligence in finance.
  11. Jang, Gia-Shuh, Lai, Feipei, Jiang, Bor-Wei,Chien, Li-Hua(1991).The first International Conference on Artificial Intelligent Applications on Wall Street.
  12. Juang, Jer-Nan(1994).Applied system identification.N.J.:PTR Prentice Hall, Englewood Cliffs.
  13. Kishikawa, Yoshinori,Tokinaga, Shozo(2000).Prediction of stock trends by using the wavelet transform and the multi-stage fuzzy inference system optimized by the GA.IEICE Trans. Fundamentals,83(2)
  14. Kosaka, M.,Mizuno, H.,Sasaki, T.,Someya, R.,Hamada, N.(1991).Applications of Fuzzy logic/Neural network to Securities Trading Decision Support System.Conference Proceedings 1991 IEEE International Conference on Systems, Man, and Cybernetics,3,1913-1918.
  15. Liu, G. P.,Billings, S. A.,Kadirkamanathan, V.(1998).UKACC international Conference on Control `98, IEE.
  16. Moshiri, Saeed, Cameron, Norman E.,Scuse, David(1999).Static, dynamic, and hybrid neural networks in forecasting inflation.Computational economics,14,219-235.
  17. Oussar, Y.,I. Rivals, L. Personnaz, G.. Dreyfus(1998).Training wavelet networks for nonlinear dynamic input-output modeling.Neurocomputing,20,173-188.
  18. Pan, Zuohong,Wang, Xiaodi(1998).A Stochastic Nonlinear Regression Estimator Using Wavelets.Computational economics,11,89-102.
  19. Qian, Jun,Shao, Huihe(1999).Novel Algorithm of Wavelet Network Structural Design.Journal of Shanghai Jiaotong University,33(4),422-424.
  20. Rao, Raghuveer M.,Bopardikar, Ajit S.(1998).Wavelet transforms: introduction to theory and applications.Addison Wesley Longman, Inc.
  21. Strang, Gilbert,Nguyen, Truong(1996).Wavelet and filter banks.USA:Wellesley-Cambridge Press.
  22. Tseng, Fang-mei, Yu, Hsiao-cheng,Tzeng, Gwo-hsiung(2002).Combining neural network model with seasonal time series ARIMA model.Technological forecasting and social change,69,71-87.
  23. Verbeek, Marno(2000).A guide to modern econometrics.New York:Chichester, Wiley.
  24. Wang, Changzhou,Wang, Sean X.(2000).Scientific and Statistical Database Management, Proceedings. 12th International Conference.
  25. Wang, Jung-Hua,Leu, Jia-Yann(1996).Stock market trend prediction using ARIMA-based neural networks.IEEE International Conference on Neural Networks,4,2160-2165.
  26. Whitehead, Bruce A.(1995).Neural, Parallel & Scientific Computations,3(2),273-280.
  27. Yang, Yiwen, Liu, Guizhong, Zhang, Zongping(2000).6th Conference on Computational Intelligence for Financial Engineering (CIFEr).
  28. Yoon, Youngohc,Swales, George(1991).Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System Science.
  29. Zhang, Bai-Ling, Coggins, Richard, Jabri, Marwan Anwar, Dersch, Dominik,Flower, Barry(2001).Multiresolution Forecasting for Futures Trading Using Wavelet Decompositions.IEEE Transactions on Neural Networks,12(4)
  30. Zhang, Jun, Walter, Gilbert G.,Miao, Yubo,Lee, Wan Ngai Wayne(1995).IEEE. Transactions on Signal Processing.
  31. Zhang, Qinghua(1997).IEEE Transcations on Neural Networks.
  32. Zhang, Qinghua,Benveniste, Albert(1992).Wavelet Networks.IEEE Transactions of Neural Networks,3(6),889-898.
被引用次数
  1. 賴建成、林育俊(2010)。類神經網路於香港跨境台灣ETF 股價預期能力之研究。國立虎尾科技大學學報,29(2),9-20。
  2. 葉怡成、黃冠傑、陳重志(2008)。具自適應核形狀參數的徑向基底函數網路。資訊管理學報,15(2),135-154。