题名

應用挖掘模糊規則建立新產品發展決策系統

并列篇名

Building New Product Decision Support System by Using Mining Fuzzy Rules

DOI

10.6382/JIM.200604.0279

作者

蔡源成(Yuan-Cheng Tsai);李淑芳(Su-Fang Lee);紀文章(Wen-Jang (Kenny) Jih)

关键词

產品發展管理 ; 模糊類神經 ; 資料挖掘 ; 決策輔助系統 ; product development management ; fuzzy neural network ; data mining ; decision support system

期刊名称

資訊管理學報

卷期/出版年月

13卷2期(2006 / 04 / 01)

页次

279 - 309

内容语文

繁體中文

中文摘要

近年來,由於大型資料庫與資料倉儲迅速增加,從龐大資訊中挖掘有效資訊與知識成為重要的研究議題。尤其企業在資源限制環境下,面對新產品開發設計過程中,常因不明確的市場需求,而無法決定新產品的規格,導致產品研發與上市的時間延遲。因此,如何應用快速發展的資訊技術,結合龐大的資料庫,建立有效企業新產品發展輔助決策系統成為產品發展管理的熱門議題。本研究提出應用模糊理論描述問題相關屬性與應用類神經演算法,建立『啟發式模糊類神經演算法』(HFNNA),搜尋潛藏在資料庫中有效的相似性規則,並經由有效的規則輔助企業,在面對不確定的市場環境下,新產品開發設計初期決定產品規格。本研究期望經由HFNNA,可達到以下幾點目的:(1)有效改善傳統的類神經系統的的架構與真實性問題間的差距。(2)建立有效的模糊規則系統。(3)應用擷取出的模糊規則建立決策輔助系統,並有效輔助企業面對不確定的市場環境。(4)除了搜尋龐大資料內蘊藏的規則之外,本研究並期望經由HFNNA,更有效率輔助企業明確了解龐大資料下蘊藏的潛藏知識。

英文摘要

In Recent years, due to the increasing use of very large databases and data warehouses, mining useful information and helpful knowledge from transaction is evolving into an important research area. The object of this paper is support business quick to determine the specification of new product in an uncertain environment by using data mining technology. The paper has been build the 'Heuristic Fuzzy Neural Network Algorithm' (HFNNA) based on Fuzzy Neural Network and the idea of to class with product's attribute. The result of this paper is proved that (1) the proposed algorithm is improved difference between neural network and real problem, (2) the proposed algorithm is built the effective data mining system, (3) using Fuzzy Association Rules inducted by the proposed algorithm are build decision support system and support business to make decision in an uncertain environment and (4) searching and collecting the effect knowledge hold on large databases and data warehouses.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Agile Software(2000).White paper, Agile Software Company.
  2. Benitez, J. M.,Castro, J. L.,Requena, I.(1997).Are artificial neural network black boxes.IEEE Transaction on Neural Network,8(5),1156-1164.
  3. Chen, Z.(2001).Data Mining and Uncertain Reasoning: An Integrated Approach.John Wiley & Sons.
  4. Dubois, D.,Prade, H.(1988).Possibility Theory: An Approach to Computerized Processing of Uncertainty.New York:Plenum Press.
  5. Hong, T. P.,Lin, K. Y.,Wang, S. L.(2003).Fuzzy data mining for interesting generalized association rules.Fuzzy Sets and Systems,138,255-269.
  6. Hu, Y. C.,Chen, R. S.,Tzeng, G. H.(2002).Mining fuzzy association rules for classification problems.Computers & Industrial Engineering,43,735-750.
  7. Hu, Y. C.,Chen, R. S.,Tzeng, G. H.(2003).Finding fuzzy classification rules using data mining technique.Pattern Recognition Letters,24,509-519.
  8. Ishibuchi, H.,Fujioka, R.,Tanaka, H.(1993).Neural networks that learn form fuzzy if-then rules.IEEE Transaction on Fuzzy Systems,1(2),85-97.
  9. Ishibuchi, H.,Nakashima, T.(1999).Improving the performance of fuzzy classifier systems for pattern classification problems with continuous attributes.IEEE Transaction on Industrial Electronics,46(6),1057-1068.
  10. Ishibuchi, H.,Nozaki, K.,Yamamoto, N.,Tanaka, H.(1995).Selecting fuzzy if-then rules for classification problems using genetic algorithms.IEEE Transaction on Fuzzy Systems,3(3),260-270.
  11. Klir, G.,Yuan, B.(1995).Fuzzy Sets and Fuzzy Logic Theory and Application.New York:Prentice-Hall.
  12. Mitra, S.,Pal, S. K.,Mitra, P.(2002).Data mining in soft computing framework: a survey.IEEE Transaction on Neural Network,13(1),3-14.
  13. Nie J.,Linkens D.(1995).Fuzzy-Neural Control.New York:Prentice Hall.
  14. Nozaki , K.,Ishibuchi, H.,Tanaka H.(1996).Adaptive fuzzy rule-based classification systems.IEEE Trans. Fuzzy Systems,4(3),238-250.
  15. Olaru, C.,Wehenkel, L.(2003).A complete fuzzy decision tree technique.Fuzzy Sets and Systems,138,221-254.
  16. Saito, K.,Nakano, R.(1987).Medical diagnostic expert system based on PDP model.International Conference on Neural Networks
  17. Smith, J. F.(2002).Decision support for rule and technique discovery in an uncertain environment.International Society of Information Fusion.
  18. Sugeno, M.,Yasukawa, T.(1993).A fuzzy-logic based approach to qualitative modeling.IEEE Transaction on Fuzzy Systems,1(1),7-31.
  19. Wang, J.(2004).A fuzzy robust scheduling approach for product development.European of Operational Research Society,152(1),180-194.
  20. Wang, J.(1999).A fuzzy set approach to activity scheduling for product development.Journal of the Operational Research Society,50,1217-1228.
  21. Wang, L. X.(1993).Stable adaptive fuzzy control on nonlinear systems.IEEE Transaction on Fuzzy Systems,1(2),146-155.
  22. Zadeh, L. A.(1996).Fuzzy logic=computing with words.IEEE Transaction on Fuzzy Systems,4(2),103-111.
  23. Zadeh, L. A.(1988).Fuzzy logic.IEEE Computer,April,83-92.
  24. 葉怡成(2001)。類神經網路模式應用與實作。台北:儒林。