题名

結合模糊理論及馬可夫鏈評估顧客價值

并列篇名

Modeling Customer Value Using Fuzzy Theory and Markov Chain

DOI

10.6382/JIM.200901.0006

作者

葉進儀(Jinn-Yi Yeh);吳泰熙(Tai-Hsi Wu);李凱平(Kai-Ping Li)

关键词

顧客終身價值 ; 模糊理論 ; 馬可夫鏈 ; RFM模型 ; Customer Lifetime Values ; Fuzzy Theory ; Markov Chain ; RFM Model

期刊名称

資訊管理學報

卷期/出版年月

16卷1期(2009 / 01 / 01)

页次

109 - 134

内容语文

繁體中文

中文摘要

隨著資訊技術的發展,企業與顧客之間的活動關係也日趨複雜,企業行銷資源的配置與行銷顧客的抉擇,在激烈的競爭商場中也愈形重要,如何將有限資源妥善分配,減少行銷預算浪費,應用顧客價值分析乃成為重要的課題之一。本研究結合模糊理論(fuzzy theory)、馬可夫鏈(Markov chain)、和RFM(recency, frequency, monetary; RFM)模式,配合折現模式來計算顧客終身價值(customer lifetime values),其中模糊理論及RFM模型定義顧客之購買狀態,馬可夫鏈則推算顧客在每期購買狀態改變的機率,然後推估出顧客在每期交易的轉換機率,再結合產品的收益與成本資料,算出顧客在各期對公司的利潤貢獻,最後將各期的利潤貢獻折現加總,計算出各種購買狀況下的顧客價值,利用此顧客價值就可指出哪些是對企業有利的顧客。模型的評估乃利用某醫療藥品器材商之實際銷售資料,與其他學者提出之顧客價值模型比較,結果發現本研究所提之模型評估結果優於其他模型。

英文摘要

Because of progressive development of information technology, the relationship between enterprises and customers becomes more complicated. Therefore, it is an important issue for resource allocation among customers. To allocate resources efficiently and reduce costs for marketing budget, customer value analysis turns to be an important tool. In this paper, fuzzy theory, Markov chain and RFM model are integrated to evaluate customer lifetime values. This approach calculates the profit contribution of customers in every purchasing situation. Firstly, customer purchasing state is updated contiguously by fuzzy theory and RFM model with transition matrix which represents the probabilities among purchasing states. Then the profit contribution of each period is computed by using revenue and cost data. Finally, the profit contribution of each customer is accumulated through some discounting consideration. This will construct the final customer lifetime values. The proposed method has been evaluated by using sales records from a well known medical company in central Taiwan. The proposed model outperforms other methods and obtains a good accurate rate for estimating of customer lifetime values.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. 周世玉、蕭登泰(2005)。顧客交易資料庫之探勘-以網路電話公司之非契約型顧客為例。資訊管理學報,12(2),183-199。
    連結:
  2. 邱宏彬、蘇建源(2004)。一個可彈性支援顧客關係管理與資料庫行銷之模糊RFM Model。電子商務學報,12(2),149-173。
    連結:
  3. 徐村和、林凌仲(2006)。顧客價值為基礎的競爭策略模式-模糊品質機能展開之應用。管理學報,23(5),557-579。
    連結:
  4. 郭瑞祥、蔣明晃、陳宏毅(2004)。顧客價值分析之隨機模型建立及實證。管理學報,21(5),675-692。
    連結:
  5. Berger, P.D.,Nasr, N.I.(1998).Customer Lifetime Value: Marketing Models and Applications.Journal of Interactive Marketing,12(1),17-30.
  6. Bhattacharyya, M.(1998).Fuzzy Markovian Decision Process.Fuzzy Sets and Systems,99(3),273-282.
  7. Brown, S.B.(2000).Customer Relationship Management: A Strategic Imperative in the World of E-Business.Ontario, Canada:John Wiley & Sons Canada Ltd..
  8. Dwyer, R.F.(1997).Customer Lifetime Valuation to Support Marketing Decision Making.Journal of Direct Marketing,11(4),6-13.
  9. Etzion, O.,Fisher, A.,Wasserkrug, S.(2005).e-CLV: A Modeling Approach for Customer Lifetime Evaluation in e-Commerce Domains, with an Application and Case Study for Online Auction.Information Systems Frontiers,7(4),421-434.
  10. Fukuda, T.,Morimoto, Y.,Morishita, S.,Tokuyama, T.(1996).Mining Optimized Association Rules for Numeric Attributes.The ACM Sigact-Sigmod-Sigart Symposium on Principles of Database Systems,Montreal, Quebec, Canada:
  11. Gupta, S.,Lehmann, D.R.(2003).Customers as Assets.Journal of Interactive Marketing,17(1),9-24.
  12. Ha, S.H.,Bae, S.M.,Park, S.C.(2002).Customer's Time-Variant Purchase Behavior and Corresponding Marking: An Online Retailer's Case.Computers and Industrial Engineering,43(4),801-820.
  13. Ha, S.H.,Park, S.C.(1998).Application of Data Mining Tools to Hotel Data Mart on the Intrant for Database Marketing.Expert Systems with Applications,15(1),1-31.
  14. Hsieh, N.(2002).An Integrated Data Mining and Behavioral Scoring Model for Analyzing Bank Customers.Expert Systems with Applications,27(4),623-633.
  15. Hughes, A.M.(1994).Strategic Database Marketing: The Masterplan for Starting and Managing a Profitable Customer-based Marketing Program.Cambridge:Probus Publishing Company.
  16. Hughes, A.M.(1996).Boosting response with RFM: Recency, Frequency, and Monetary Analysis Finds the Buyers in Your Database.American Demographics,5,4-10.
  17. Hwang, H.,Jung, T.,Suh, E.(2004).An LTV Model and Customer Segmentation Based on Customer Value: A Case Study on the Wireless Telecommunication Industry.Expert Systems with Applications,26(2),181-188.
  18. Jain, D.,Singh, S.S.(2002).Customer Lifetime Value Research in Marketing: A Review and Future Directions.Journal of Interactive Marketing,16(2),34-45.
  19. Kaymak, U.(2001).Fuzzy target selection using RFM variables.IFSA World Congress and 20th NAFIPS International Conference,Vancouver, British:
  20. Kotler, P.,Ang, S.H.,Leong, S.M.,Tan, C.T.(1999).Marketing Management: An Asian Perspective.Singapore:Prentice Hall.
  21. Lee, J.H.,Park, S.C.(2005).Intelligent Profitable Customers Segmentation System Based on Business Intelligence Tools.Expert Systems with Applications,29(1),145-152.
  22. Lewis, C.D.(1982).Industrial and Business Forecasting Methods: A practical Guide to Exponential Smoothing and Curve Fitting.London:Butterworth Scientific.
  23. Miglautsch, R.J.(2000).Thoughts on RFM Scoring.Journal of Database Marketing,8(1),67-72.
  24. Pfeifer, P.E.,Carraway, R.L.(2000).Modeling Customer Relationships as Markov Chains.Journal of Interactive Marketing,14(2),43-55.
  25. Shin, H.W.,Sohn, S.Y.(2004).Segmentation of Stock Trading Customers According to Potential Value.Expert Systems with Applications,27(1),27-33.
  26. Stone, B.(1995).Successful Direct Marketing Methods.Lincolnwood, IL:NTC Business Books.
  27. Swami, S.,Puterman, M.L.,Weinberg, C.B.(2001).Play It Again, Sam? Optimal Replacement Policies for a Motion Picture Exhibitor.Manufacturing and Service Operations Managemen,3(4),369-386.
  28. Tsai, C.Y.,Chiu, C.C.(2004).A Purchase-based Market Segmentation Methodology.Expert Systems with Applications,27(2),265-276.
  29. Wang, H.,Hong, W.(2006).Managing Ccustomer Profitability in a Competitive Market by Continuous Data Mining.Industrial Marketing Management,35(6),715-723.
  30. Wedel, S.,Kamakura, W.(1997).Market segmentation: Conceptual and methodological foundations.Boston:Kluwer.
  31. Yang, A.X.(2004).How to Develop New Approaches to RFM Segmentation.Journal of Targeting, Measurement and Analysis for Marketing,13(1),50-60.
  32. Yen, J.,Langari, R.(1999).Fuzzy Logic Intelligence Control and Information.Upper Saddle River, NJ:Prentice-Hall.
  33. 宋家寬(2002)。碩士論文(碩士論文)。臺灣大學國際企業學研究所。
  34. 高孔廉、張緯良(2000)。作業研究。台北:五南圖書出版公司。
  35. 陳坤茂(1998)。作業研究。台北:華泰文化事業股份有限公司。
  36. 陳秋恭(2004)。碩士論文(碩士論文)。成功大學航空太空工程研究所。
  37. 閔庭祥(2001)。博士論文(博士論文)。中央大學資訊管理所。
  38. 楊清潭(2003)。碩士論文(碩士論文)。東吳大學資訊管理科學所。
  39. 葉丁鴻譯、林義貴譯、吳炎崑譯、Richard Bronson、Gray Bronson著(1996)。管理數學。台中:滄海書局。
  40. 蘇木春、張孝德(2000)。機器學習:類神經路、模糊系統以及基因演算法則。台北:全華科技圖書股份有限公司。
  41. 蘇育代(2004)。碩士論文(碩士論文)。臺北大學企業管理學系。