题名

利用相關回饋建立概念化的使用者興趣檔以協助使用者進行網頁查詢

并列篇名

Applying Relevance Feedback to Develop the Conceptual User Profile to Assist the User in Web Search

DOI

10.6382/JIM.200901.0014

作者

周世傑(Shih-Chieh Chou);吳政穎(Chen-Gying Wu)

关键词

使用者興趣檔 ; 資訊檢索 ; 資訊需求 ; 概念擷取 ; 向量空間模型 ; User Profile ; Information Retrieval ; Information Need ; Concept Extraction ; Vector Space Model

期刊名称

資訊管理學報

卷期/出版年月

16卷_S期(2009 / 01 / 01)

页次

83 - 96

内容语文

繁體中文

中文摘要

現今網路的搜尋引擎主要都是設計給大眾做資訊檢索,對於不同背景與需求的使用者,當提供一個相同的查詢句,所得到的搜尋結果會都是相同的大量網頁,這使得個人化搜尋的需求越來越高。使用者興趣檔描述了一個特定使用者的興趣,在資訊檢索的系統裡,通常用來幫助搜尋引擎提供個人化的搜尋結果,或者應用在推薦系統上。當今大部分的使用者興趣檔,是反映使用者長期的資訊需求,而非單次檢索的資訊需求。 本研究提出了一套方法,應用了概念擷取的技術,來幫助使用者建立一種短期的使用者興趣檔,希望藉由相關回饋來擷取出一個向量空間模型,用來代表使用者單次檢索的資訊需求,以幫助系統檢索出,與使用者需求相關的網頁給使用者瀏覽,以降低使用者的瀏覽時間,提高檢索的效率。

英文摘要

Nowadays, the search engine has been designed to retrieve information. With the same query, the users will get the same result which usually is a mass amount of web pages although the users' interests might be different. Therefore, enhancement on personalized search is always needed. The user profile which depicts the user's search interest has been applied to assist the user in the searching of personalized information in searching engine. Contemporary user profile mostly has been designed to reflect the user's long-term information interest. This study has proposed a method to develop the user profile which could reflect the user's short-term information interest. In the method, the information of relevance feedback has been utilized to extract the user's concepts of interest. These concepts of interest are then represented in a vector space model as the user profile for machine calculation. With the application of the vector space model of interest concepts, the web pages of the user's interest could be better retrieved to enhance retrieval efficiency.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Sullivan, D."The Older You Are, The More You Want Personalized Search,"2004, http://searchenginewatch.com/searchday/article.php/3385131
  2. Baeza-Yates, R.,Ribeiro-Neto, B.(1999).Modern Information Retrieval.New York:Addison-Wesley.
  3. Chang, Y.,Kim, M.,Raghavan, V. V.(2006).Construction of Query Concepts Based on Feature Clustering of Documents.Information Retrieval,9(3),231-248.
  4. Fresno, V.,Ribeiro, A.(2004).An Analystical Approach to Concept Extraction in HTML Environments.Journal of Intelligent Information Systems,22(3),215-235.
  5. Griffith, A.,Luckhurst, H. C.,Willet, P.(1986).Using Inter-Document Similarity Information in Document Retrieval Systems.Journal of the American Society for Information Science,37(1),3-11.
  6. Karoui, L.,Fufaure, M. A.,Bennacer, N.(2006).A New Extraction Concept based on Contextual Clustering.Proceedings of the International Conference on Computational Intelligence for Modeling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce,Washington, D.C., USA:
  7. Kim, H. R.,Chan, P. K.(2003).Learning Implicit User Interest Hierarchy for Context in Personalization.Proceedings of the 8th international conference on Intelligent user interfaces,Miami, Florida, USA:
  8. Lecceuche, R.(2000).Finding Comparatively Important Concepts between Texts.Proceedings of the 15th IEEE international conference on Automated software engineering,Washington, D.C., USA:
  9. Liu, F.,Yu, C.,Meng, W.(2002).Personalized Web Search by Mapping User Queries to Categories.Proceedings of the eleventh international conference on Information and knowledge management,McLean, Virginia, USA:
  10. Mulvenna, M. D.,Anand, S. S.,Buchner, A.G.(2000).Personalization on the Net using Web Mining.Comm. Of the ACM,43(8),123-125.
  11. Rahman, M.,Chowdhury, F. A.,Sohel, P. N.,Kamruzzaman, S. M.(2003).Text Classification Using the Concept of Association Rule of Data Mining.Proceeding of the International Conference on Information Technology,Maribor, Slovenia:
  12. Salton, G.,Buckley, C.(1988).Term-Weighting Approaches in Automatic Text Retrieval.Information Processing and Management,24(5),513-523.
  13. Salton, G.,Lesk, M. E.(1968).Computer Evaluation of Indexing and Text Processing.Journal of the ACM,15(1),8-36.
  14. Soucy, P.,Mineau, G. W.(2005).Beyond TFIDF Weighting for Text Categorization in the Vector Space Model.International Joint Conference on Artificial Intelligence,Edinburgh, Scotland:
  15. Speretta, M.,Gauch, S.(2005).Personalized Search Based on User Search Histories.Proceedings of the 2005 IEEE/WIC/ACM international Conference on Web intelligence,Washington, D.C.:
  16. Sugimoto, M.(1999).User Modeling and Adaptive Interaction in Information Gathering System.Journal of Japanese Society for Artificial Intelligence,14(1),25-32.
  17. Trajkova, J.,Gauch, S.(2004).Improving Ontology-Based User Profiles.Proceedings of RIAO,Vaucluse, France:
  18. Zacharis, Z. N.,Panayiotopoulos, T.(2001).Web Search Using a Genetic Algorithm.IEEE Internet Computing,5(2),18-26.
被引用次数
  1. 蔡明志,徐梓育,胡俊之(2020)。以查詢句下的階層式概念網路建立之使用者興趣檔之研究。Journal of Data Analysis,15(2),53-82。
  2. 劉宜芳、柯華葳(2017)。線上閱讀研究之回顧與展望。教育科學研究期刊,62(2),61-87。