题名

A Heuristic Bayesian Regression Approach for Causal Explanatory Study: Exemplified by an IS Impact Study

并列篇名

因果解釋性研究的啟發式貝氏迴歸方法-以資訊系統影響研究為例

DOI

10.6382/JIM.200904.0151

作者

董信煌(Shing-Hwang Doong);李慶章(Ching-Chang Lee)

关键词

研究方法 ; 因果解釋性研究 ; 資訊系統影響 ; 貝氏迴歸 ; 模式選擇 ; Research methods ; casual explanatory study ; IS impact ; Bayesian regressions ; model selection

期刊名称

資訊管理學報

卷期/出版年月

16卷2期(2009 / 04 / 01)

页次

151 - 176

内容语文

英文

中文摘要

因果解釋性研究是實證研究中很重要的一種研究方法,在實證研究中學者常使用複迴歸方法來驗證研究模式並找到顯著因子。貝氏迴歸是一種不同於複迴歸的分析工具,它使用事後機率抽取樣本來做統計推論,由於馬可夫鏈蒙地卡羅演算法可以有效率依機率分佈來抽取樣本,貝氏迴歸分析已變得越來越可行。本研究提出一個基於複迴歸分析結果的啟發式方法來建構貝氏迴歸分析的資訊事前機率,來自於兩個不同的實證研究資料將被用來測試此方法,這兩個實證研究皆是在探討資訊系統對績效的影響。偏離資訊法則顯示出此一啟發式方法能顯著的改善使用非資訊事前機率塑模的貝氏迴歸分析,當信任區間被用來尋找顯著因子時,我們發現此一新方法能找到更細膩的因子且可以設計出更好的方法來診斷資訊系統問題。

英文摘要

Causal explanatory study is a very important research method in empirical research whereof research models are frequently validated by multiple linear regressions (MLR) with significant factors sought. An alternative to MLR is Bayesian regressions where statistical inferences are made with samples drawn from posterior distributions. Efficient simulation algorithms of the Markov chain Monte Carlo type have made Bayesian regressions practical. We propose a heuristic method based on the outputs of MLR to construct informative priors for Bayesian regressions. Data collected from two empirical studies of information systems (IS) impact on performance is used to demonstrate the proposed method. Deviance information criterion shows that this heuristic procedure significantly improves a Bayesian modeling with uninformative priors. When credible intervals are used to locate significant factors, it is found that the heuristic Bayesian approach, capable of finding delicate drivers, can help design better diagnostics for IS problems.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Banerjee, S.,Kauffman, R.J.,Wang, B.(2005).A Dynamic Bayesian Analysis of the Drivers of International Firm Survival.Proceedings of International Conference on Electronic Commerce,Xi'an, China:
  2. Bansal, A.,Kauffman, R.J.,Weitz, R.R.(1993).Comparing the Modeling Performance of Regression and Neural Networks as Data Quality Varies: A Business Value Approach.Journal of Management Information Systems,10(1),11-32.
  3. Burton, P.R.,Gurrin, L.C.,Campbell, M.J.(1998).Clinical Significance Not Statistical Significance: A Simple Bayesian Alternative to P Values.Journal of Epidemiology and Community Health,52,318-323.
  4. Cao, J.,Crews, J.M.,Lin, M.,Deokar, A.,Burgoon, J.K.,Nunamaker, J.F.(2006).Interactions between System Evaluation and Theory Testing: a Demonstration of the Power of a Multifaceted Approach to Information Systems Research.Journal of Management Information Systems,22(4),207-235.
  5. Congdon, P.(2003).Applied Bayesian Modeling.New York:John Wiley & Sons.
  6. Cooper, D.R.,Schindler, P.S.(2008).Business Research Methods.New York:McGraw Hill.
  7. Davis, F.D.(1989).Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology.MIS Quarterly,13(3),319-342.
  8. Denison, D.G.,Holmes, C.C.,Mallick, B.K.,Smith, A.F.(2002).Bayesian Methods for Nonlinear Classification and Regression.New York:John Wiley & Sons.
  9. Devore, J.L.(2004).Probability and Statistics for Engineering and the Sciences.Belmont, CA:Thomson Brooks/Cole.
  10. Diamantopoulos, A.,Siguaw, J.A.(2000).Introducing Lisrel: a Guide for the Uninitiated.London:Sage Publications Ltd.
  11. Dickson, G.W.,DeSanctis, G.,McBride, D.J.(1986).Understanding the Effectiveness of Computer Graphics for Decision Support: a Cumulative Experimental Approach.Communications of the ACM,29(1),40-47.
  12. Gallizo, J.L.,Jimenez, F.,Salvador, M.(2002).Adjusting Financial Ratios: a Bayesian Analysis of the Spanish Manufacturing Sector.OMEGA,30,185-195.
  13. Garthwaite, P.H.,Jolliffe, I.T.,Jones, B.(2002).Statistical Inference.New York:Oxford University Press.
  14. Goodhue, D.L.(1995).Understanding User Evaluations of Information Systems.Management Science,41(12),1827-1844.
  15. Goodhue, D.L.,Thompson, R.L.(1995).Task-technology Fit and Individual Performance.MIS Quarterly,19(2),213-236.
  16. Greenland, S.(2007).Bayesian Perspectives for Epidemiological Research. II. Regression analysis.International Journal of Epidemiology,36(1),195-202.
  17. Hogg, V.H.,Tannis, E.A.(1997).Probability and Statistical Inference.Upper Saddle River, N.J.:Prentice-Hall.
  18. Kennedy, P.(2003).A Guide to Econometrics.Cambridge, MA:MIT Press.
  19. Koop, G.(2003).Bayesian Econometrics.New York:John Wiley & Sons.
  20. Lucas, H.(1975).Performance and Use of an Information System.Management science,21(8),908-919.
  21. Working paper, University of British Columbia, Faculty of Commerce
  22. Nunnally, J.(1978).Psychometric Theory.New York:McGraw Hill.
  23. Schköpf, B.,Smola, A.(2002).Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond.Cambridge, MA:MIT Press.
  24. Spiegelhalter, D.J.,Best, N.G.,Carlin, B.P.,van der Linde, A.(2002).Bayesian Measures of Model Complexity and Fit (with discussion).Journal of the Royal Statistical Society: Series B,64(4),583-640.
  25. WinBUGS-an Interactive Windows Version of the BUGS Program for Bayesian Analysis of Complex Statistical Models Using Markov Chain Monte Carlo (MCMC) Techniques
  26. Thorburn, D.(2005).Significance Testing, Interval Estimation or Bayesian Inference: Comments to "Extracting a Maximum of Useful Information from Statistical Research Data" by S. Sohlberg and G. Andersson.Scandinavian Journal of Psychology,46(1),79-82.
  27. Urbach, P.(1992).Regression Analysis: Classical and Bayesian.The British Journal for the Philosophy of Science,43(3),311-342.
  28. Vapnik, V.(1998).Statistical Learning Theory.New York:John Wiley & Sons.
  29. Vessey, I.(1991).Cognitive Fit: a Theory-based Analysis of the Graphics vs. Tables Literature.Decision Sciences,22(2),219-240.
  30. Witten, I.H.,Frank, E.(2005).Data Mining, Practical Machine Learning Tools and Techniques.San Francisco:Morgan Kauffman.
  31. Wright, J.H.(2003).Boards of Governors of the Federal Reserve System.International Finance Discussion.