题名

Mining Closed Multi-Dimensional Interval Patterns

并列篇名

探勘封閉性多維度區間樣式

DOI

10.6382/JIM.201201.0161

作者

李瑞庭(Anthony J. T. Lee);楊富丞(Fu-Chen Yang);李偉誠(Wei-Cheng Lee)

关键词

多維區間樣式 ; 一維區間樣式 ; 頻繁樣式 ; 封閉性樣式 ; 資料探勘 ; multi-dimension interval pattern ; 1-dimension interval pattern ; frequent pattern ; closed pattern ; data mining

期刊名称

資訊管理學報

卷期/出版年月

19卷1期(2012 / 01 / 01)

页次

161 - 184

内容语文

英文

中文摘要

目前,已有許多學者提出探勘頻繁一維區間樣式的方法。但是,在實務上有許多應用包括多維度區間的資料。因此,在本篇論文中,我們提出「MIAMI」演算法,它利用頻繁樣式樹,以深度優先法遞迴產生所有的封閉性多維度區間樣式。在探勘的過程中,我們設計三個有效的修剪策略,以刪除不可能的候選樣式,以及使用封閉性測試移除非封閉性樣式。實驗結果顯示,MIAMI 演算法比改良式Apriori 演算法更有效率,也更具擴充性。

英文摘要

Many methods have been proposed to find frequent one-dimensional (1-D) interval patterns, where each event in the database is realized by a 1-D interval. However, the events in many applications are in nature realized by multi-dimensional intervals. Therefore, in this paper, we propose an efficient algorithm, called MIAMI, to mine closed multi-dimensional interval patterns from a database. The MIAMI algorithm employs a pattern tree to enumerate all closed patterns in a depth-first search manner. In the mining process, we devisethree effective pruning strategies to remove impossible candidates and perform a closure checking scheme to eliminate non-closed patterns. The experimental results show that the MIAMI algorithm is more efficient and scalable than the modified Apriori algorithm.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Agrawal, R.,Srikant, R.(1994).Fast algorithms for mining association rules.Proceedings of the International Conference on Very Large Data Bases,1215,487-499.
  2. Agrawal, R.,Srikant, R.(1995).Mining sequential patterns.Proceedings of the International Conference on Data Engineering,Taipei, Taiwan:
  3. Allen, J. F.(1983).Maintaining knowledge about temporal intervals.Communications of the ACM,26(11),832-843.
  4. de Amo, S.,Junior, W. P.,Giacometti, A.(2008).MILPRIT*: A constraint-based algorithm for mining temporal relational patterns.International Journal of Data Warehousing and Mining,4(4),42-61.
  5. Guyer, T.,Quiniou, R.(2008).Mining temporal patterns with quantitative intervals.Proceedings of International Conference on Data Mining
  6. Han, J.,Pei, J.,Mortazavi-Asl, B.,Chen, Q.,Dayal, U.,Hsu, M. C.(2000).FreeSpan: Frequent pattern-projected sequential pattern mining.Proceedings of International Conference on Knowledge Discovery and Data Mining,Boston, USA:
  7. Han, J.,Pei, J.,Yin, Y.(2000).Mining frequent patterns without candidate generation.Proceedings of the ACM SIGMOD International Conference on Management of Data,29(2),1-12.
  8. Höppner, F.(2001).Learning temporal rules from state sequences.Proceedings of International Joint Conferences on Artificial Intelligence Workshop on Learning from Temporal and Spatial Data,Seattle, USA:
  9. Kam, P.-S.,Fu, A. W.-C.(2000).Discovering temporal patterns for interval-basedevents.Proceedings of Second International Conference on Data Warehousingand Knowledge Discovery,London, UK:
  10. Kong, X.,Wei, Q.,Chen, G.(2010).An approach to discovering multi-temporal patterns and its application to financial databases.Information Sciences,180(6),873-885.
  11. Lee, Y. J.,Lee, J. W.,Chai, D. J.,Hwang, B. H.,Ryu, K. H.(2009).Mining temporal interval relational rules from temporal data.The Journal of Systems and Software,82(1),155-167.
  12. Papapetrou, P.,Kollios, G.,Sclaroff, S.,Gunopulos, D.(2009).Mining frequent arrangements of temporal intervals.Knowledge and Information Systems,21(2),133-171.
  13. Patel, D.,Hsu, W.,Lee, M.(2008).Mining relationships among interval-based events for classification.Proceedings of the ACM SIGMOD International Conference on Management of Data,Vancouver, Canada:
  14. Pei, J.,Han, J.,Mao, R.(2000).CLOSET: An efficient algorithm for mining frequent closed itemsets.Proceedings of the 5th ACM-SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery,Dallas, USA:
  15. Pei, J.,Han, J.,Mortazavi-Asl, B.,Pinto, H.(2001).PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth.Proceedings of the 17th International Conference on Data Engineering,Heidelberg, Germany:
  16. Winarko, E.,Roddick, J. F.(2007).ARMADA-An algorithm for discovering richer relative temporal association rules from interval-based data.Data and Knowledge Engineering,63(1),76-90.
  17. Wu, S.-Y.,Chen, Y.-L.(2007).Mining nonambiguoustemporalpatterns for interval-based events.IEEE Transactions on Knowledge and Data Engineering,19(6),742-758.
  18. Wu, S.-Y.,Chen, Y.-L.(2009).Discovering hybrid temporal patterns from sequences consisting of point- and interval-based events.Data and Knowledge Engineering,68(11),1309-1330.
  19. Zaki, M. J.(2001).SPADE: An efficient algorithm for mining frequent sequences.Machine Learning,42(1-2),31-60.
  20. Zaki, M. J.,Hsiao, C.-J.(2005).Efficient algorithms for mining closed itemsets and their lattice structure.IEEE Transactions on Knowledge and Data Engineering,17(4),462-478.
被引用次数
  1. 楊亞澄、翁政雄、胡雅涵(2016)。運用關聯規則及改變探勘技術於防火牆政策規則優化。資訊管理學報,23(3),277-304。