题名 |
Mining Closed Multi-Dimensional Interval Patterns |
并列篇名 |
探勘封閉性多維度區間樣式 |
DOI |
10.6382/JIM.201201.0161 |
作者 |
李瑞庭(Anthony J. T. Lee);楊富丞(Fu-Chen Yang);李偉誠(Wei-Cheng Lee) |
关键词 |
多維區間樣式 ; 一維區間樣式 ; 頻繁樣式 ; 封閉性樣式 ; 資料探勘 ; multi-dimension interval pattern ; 1-dimension interval pattern ; frequent pattern ; closed pattern ; data mining |
期刊名称 |
資訊管理學報 |
卷期/出版年月 |
19卷1期(2012 / 01 / 01) |
页次 |
161 - 184 |
内容语文 |
英文 |
中文摘要 |
目前,已有許多學者提出探勘頻繁一維區間樣式的方法。但是,在實務上有許多應用包括多維度區間的資料。因此,在本篇論文中,我們提出「MIAMI」演算法,它利用頻繁樣式樹,以深度優先法遞迴產生所有的封閉性多維度區間樣式。在探勘的過程中,我們設計三個有效的修剪策略,以刪除不可能的候選樣式,以及使用封閉性測試移除非封閉性樣式。實驗結果顯示,MIAMI 演算法比改良式Apriori 演算法更有效率,也更具擴充性。 |
英文摘要 |
Many methods have been proposed to find frequent one-dimensional (1-D) interval patterns, where each event in the database is realized by a 1-D interval. However, the events in many applications are in nature realized by multi-dimensional intervals. Therefore, in this paper, we propose an efficient algorithm, called MIAMI, to mine closed multi-dimensional interval patterns from a database. The MIAMI algorithm employs a pattern tree to enumerate all closed patterns in a depth-first search manner. In the mining process, we devisethree effective pruning strategies to remove impossible candidates and perform a closure checking scheme to eliminate non-closed patterns. The experimental results show that the MIAMI algorithm is more efficient and scalable than the modified Apriori algorithm. |
主题分类 |
基礎與應用科學 >
資訊科學 社會科學 > 管理學 |
参考文献 |
|
被引用次数 |