题名

結合學習向量量化與協同過濾之交換混合式過濾電影推薦架構

并列篇名

Combining LVQ and Collaboration Filtering on Switching Hybrid Movie Recommendation

作者

黃純敏(Chuen-Min Huang);林重佑(Chung-Yu Lin);黃進瑞(Jin-Ruei Huang)

关键词

學習向量量化 ; 推薦系統 ; 混合過濾 ; 協同過濾 ; 內容過濾 ; Learning Vector Quantization ; Recommendation System ; Hybrid Filtering ; Collaborative Filtering ; Content-based Filtering

期刊名称

資訊管理學報

卷期/出版年月

20卷4期(2013 / 10 / 01)

页次

423 - 447

内容语文

繁體中文

中文摘要

內容過濾與協同過濾是經常用於提供個人化服務的技術,近年來則多偏向結合各種監督式學習的混合式過濾方式,並以三層或多層式網路架構產生推薦結果,然而其設計不易且有網路收斂效率低的問題。本研究以學習向量量化(Learning Vector Quantization;LVQ)簡約的兩層式網路架構,運用交換(Switching)混合過濾策略產生推薦內容。研究以MovieLens資料集驗證方法架構。實驗發現,學習向量量化可快速學習使用者多變的喜好。搭配交換混合過濾策略,可產生適切的個人化內容,滿足不同使用者的推薦需求。研究結果顯示,本架構確可改善內容過濾與協同過濾各自的缺點,整體精確率為79%,召回率為82%。

英文摘要

Content-based filtering and collaborative filtering are often used to provide personalized services technology. Recently, lots of supervised neural networks are combined with hybrid recommendation and adopted three layers or multiple layers to construct recommendation. Their drawbacks are slow convergence and hard to design. In this paper, we presented a novel switching hybrid recommendation framework based on two-layer Learning Vector Quantization (LVQ) to provide personalized recommendations. MovieLens data set was used to test our framework and the experiment indicated LVQ can quickly detect and learn from user preferences. Results showed that switching hybrid strategy provides promising personalized recommendation and satisfied the needs of different users. Our experiment gains 79% of precision, and the recall rate also reaches 82%.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. mludwig. (2011), ‘MovieLens Data Sets | GroupLens Research', available at http://www.grouplens.org/node/73 (accessed 23 February 2012)
  2. Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J. and Torkkola, K. (1996), LVQ PAK: the Learning Vector Quantization Program Package, Helsinki University of Technology, FINLAND..
  3. Acilar, A.M.,Arslan, A.(2009).A collaborative filtering method based on artificial immune network.Expert Systems with Applications,36(4),8324-8332.
  4. Adomavicius, G.,Tuzhilin, A.(2005).Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions.IEEE Transactions on Knowledge and Data Engineering,17(6),734-749.
  5. Ahn, H.J.(2008).A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem.Information Sciences,178(1),37-51.
  6. Balabanović, M.,Shoham, Y.(1997).Fab: content-based, collaborative recommendation.Communications of the ACM,40(3),66-72.
  7. Barragáns-Martínez, A.B.,Costa-Montenegro, E.,Burguillo, J.C.,Rey-López, M.,Mikic-Fonte, F.A.,Peleteiro, A.(2010).A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition.Information Sciences,180(22),4290-4311.
  8. Breese, J.S.,Heckerman, D.,Kadie, C.(1998).Empirical analysis of predictive algorithms for collaborative filtering.Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence (UAI-98),Madison, Wisconsin:
  9. Brusilovsky, P.(Ed.),Kobsa, A.(Ed.),Nejdl, W.(Ed.)(2007).The Adaptive Web: Methods and Strategies of Web PEersonalization.Berlin, Heidelberg:Springer-Verlag.
  10. Burke, R.(2002).Hybrid recommender systems: survey and experiments.User Modeling and User-Adapted Interaction,12(4),331-370.
  11. Callander, S.(2011).Searching and learning by trial and error.The American Economic Review,101(6),2277-2308.
  12. Chou, P.H.,Li, P.H.,Chen, K.K.,Wu, M.J.(2010).Integrating web mining and neural network for personalized e-commerce automatic service.Expert Systems with Applications,37(4),2898-2910.
  13. Christakou, C.,Stafylopatis, A.(2005).A hybrid movie recommender system based on neural networks.Proceedings of the Fifth International Conference on Intelligent Systems Design and Applications (ISDA '05),Wroclaw, Poland:
  14. Chuan, Z.,Xianliang, L.,Mengshu, H.,Xu, Z.(2005).A LVQ-based neural network anti-spam email approach.SIGOPS Operating Systems Review,39(1),34-39.
  15. Das, A.S.,Datar, M.,Garg, A.,Rajaram, S.(2007).Google news personalization: scalable online collaborative filtering.Proceedings of the Sixteenth international conference on World Wide Web (WWW2007),Banff, Alberta, Canada:
  16. de Campos, L.M.,Fernández-Luna, J.M.,Huete, J.F.,Rueda-Morales, M.A.(2010).Combining content-based and collaborative recommendations: a hybrid approach based on Bayesian networks.International Journal of Approximate Reasoning,51(7),785-799.
  17. Drachsler, H.,Hummel, H.G.K.,Koper, R.(2008).Personal recommender systems for learners in lifelong learning networks: the requirements, techniques and model.International Journal of Learning Technology,3(4),404-423.
  18. Goldberg, D.,Nichols, D.,Oki, B.M.,Terry, D.(1992).Using collaborative filtering to weave an information tapestry.Communications of the ACM,35(12),61-70.
  19. Gray, R.(1984).Vector quantization.IEEE ASSP Magazine,1(2),4-29.
  20. Kamahara, J.,Asakawa, T.,Shimojo, S.,Miyahara, H.(2005).A community-based recommendation system to reveal unexpected interests.Proceedings of the Eleventh International Multimedia Modelling Conference (MMM 2005),Melbourne, Australia:
  21. Khuwaja, G.A.(2003).LVQ base models for recognition of human faces.International Journal of Computer Applications in Technology,16(4),181-193.
  22. Kohonen, T.(1986).Learning Vector Quantization for Pattern Recognition.FINLAND:Helsinki University of Technology.
  23. Kohonen, T.(2001).Learning vector quantization.Self-Organizing Maps,30,245-261.
  24. Lang, K.(1995).NewsWeeder: learning to filter netnews.Proceedings of the 12th International Conference on Machine Learning ( ICML95),Lake Tahoe, CA:
  25. Lekakos, G.,Caravelas, P.(2008).A hybrid approach for movie recommendation.Multimedia Tools and Applications,36(1-2),55-70.
  26. Li, Q.,Kim, B.M.(2003).An approach for combining content-based and collaborative filters.Proceedings of the sixth international workshop on Information retrieval with Asian languages,Sapporo:
  27. Linde, Y.,Buzo, A.,Gray, R.(1980).An algorithm for vector quantizer design.IEEE Transactions on Communications,28(1),84-95.
  28. Marovic, M.,Mihokovic, M.,Miksa, M.,Pribil, S.,Tus, A.(2011).Automatic movie ratings prediction using machine learning.Proceedings of the 34th International Convention on Information and Communication Technology, Electronics and Microelectronics ((MIPRO 2011),Opatija, Croatia:
  29. Martín-Valdivia, M.T.,García-Vega, M.,Ureña-López, L.A.(2003).LVQ for text categorization using a multilingual linguistic resource.Neurocomputing,55(3-4),665-679.
  30. Martín-Valdivia, M.T.,Ureña-López, L.A.,García-Vega, M.(2007).The learning vector quantization algorithm applied to automatic text classification tasks.Neural Networks,20(6),748-756.
  31. Mizuno, Y.,Mabuchi, H.,Chakraborty, G.,Matsuhara, M.(2010).Clustering of EEG data using maximum entropy method and LVQ.Proceedings of the 10th WSEAS international conference on Systems theory and scientific computation (ISTASC'10),Taipei, Taiwan:
  32. Mooney, R.J.,Roy, L.(2000).Content-based book recommending using learning for text categorization.Proceedings of the fifth ACM conference on Digital libraries (ACM DL 2000),San Antonio, Texas:
  33. Putnam, H.(1965).Trial and error predicates and the solution to a problem of Mostowski.The Journal of Symbolic Logic,30(1),49-57.
  34. Resnick, P.,Iacovou, N.,Suchak, M.,Bergstrom, P.,Riedl, J.(1994).GroupLens: an open architecture for collaborative filtering of netnews.Proceedings of the 1994 ACM conference on Computer Supported Cooperative Work (CSCW '94),Chapel Hill, North Carolina:
  35. Sarwar, B.,Karypis, G.,Konstan, J.,Reidl, J.(2001).Item-based collaborative filtering recommendation algorithms.Proceedings of the Tenth international conference on World Wide Web (WWW10),Hong Kong, China:
  36. Sung, H.H.(2006).Digital content recommender on the Internet.IEEE Intelligent Systems,21(2),70-77.
  37. Swanson, D.R.(1977).Information retrieval as a trial-and-error process.The Library Quarterly: Information, Community, Policy,47(2),128-148.
  38. Symeonidis, P.,Nanopoulos, A.,Manolopoulos, Y.(2008).Providing justifications in recommender systems.IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans,38(6),1262-1272.
  39. Umer, M.,Khiyal, M.(2007).Classification of textual documents using learning vector quantization.Information Technology Journal,6(1),154-159.
  40. Yong, D.,Zhonghai, W.,Cong, T.,Huayou, S.,Hu, X.,Zhong, C.(2010).A hybrid movie recommender based on ontology and neural networks.Proceeding of the IEEE/ACM International Conference on Green Computing and Communications, and International Conference on Cyber, Physical and Social Computing (GreenCom-CPSCom 2010),Hangzhou, China:
  41. Yu, P.S.(1999).Data mining and personalization technologies.Proceedings of the Sixth International Conference on Database Systems for Advanced Applications (DASFAA' 99),Hsinchu, Taiwan:
  42. 葉怡成(2003)。類神經網路模式應用與實作。儒林圖書有限公司:儒林圖書有限公司。