题名 |
結合腦波分析與內容導向過濾為基礎的文章推薦系統 |
并列篇名 |
A Document Recommendation System Based on Content-based Filtering and Brainwave |
作者 |
陳灯能(Deng-Neng Chen);蘇柏銘(Po-Ming Su) |
关键词 |
腦波 ; 神經資訊學 ; 文章推薦系統 ; 內容導向過濾 ; 類神經網路 ; brainwave ; NeuroIS ; document recommender system ; content-based filtering ; neural network |
期刊名称 |
資訊管理學報 |
卷期/出版年月 |
22卷2期(2015 / 04 / 01) |
页次 |
141 - 170 |
内容语文 |
繁體中文 |
中文摘要 |
推薦系統是一種基於使用者紀錄或偏好進行資料收集及分析,藉此分析結果逕行主動式資訊推薦的資訊系統,推薦系統在提昇個人化資訊服務品質上扮演重要的角色。傳統上推薦系統的設計著重於將資料庫中使用者的相關記錄進行分析,也因此衍生出內容導向、協同導向等不同演算法為基礎的推薦系統,在神經資訊學中,則是認為資訊系統的開發可以結合神經科學的理論與工具,以更貼近人類認知行為模式來開發資訊系統,也因此本研究嘗試將使用者的腦波訊號納入推薦系統的演算法設計之中,期望能提供更貼近使用者偏好的推薦服務。腦波是一種生物訊號,是人們大腦在進行某種活動時自然產生的一種訊號,可透過腦電波儀進行量測。本研究首先以實驗法收集受測者腦波訊號與其興趣偏好資料,並利用類神經網路建立腦波與使用者偏好之間的關聯模型,進而以此關聯資訊為核心,開發一套結合腦波與內容導向資訊過濾為基礎的文章推薦系統,最後並以實驗法驗證本推薦系統的推薦精準度。研究結果發現,本研究所開發的文章推薦系統能確實提昇推薦精準度,也證明了腦波能夠有效的被利用在推薦系統的設計上。 |
英文摘要 |
Purpose-Recommender system is an information system that can recommend the most appropriate information to the user. In a recommender system, the user's logs and preferences are collected and analyzed to figure out the user's profile that can be used to develop the system. Brainwave is a kind of biological signal that can be used to indicate different mental condition of a human. In this research, we applied the brainwave information to identify the attention level of the experimental subjects to design and implement a document recommender system. Design/methodology/approach-We applied electroencephalography (EEG) to collect the brainwave information, and the association model between users' brainwaves and preferences were constructed by neural network. In advance, the brainwave-preference model was applied to develop a document recommender system. We have also conducted an experiment to evaluate the effectiveness of our recommender system. Findings-The results show that the recommender system based on brainwave-preference model has better recommendation precision rate than the traditional content-based recommender system. Brainwave can play an important role in the development of recommender systems. Research limitations/implications-Due to the limitation of unstable brainwave information collected in the experiment, it is difficult to request the experimental subjects to read more documents as the training data, and effective experimental samples are also limited. By the advance of EEG and neuroscience, the measuring of brainwave will be getting more precise and stable and the development of brainwave-based information systems will be more feasible. Practical implications-We have designed and implemented a brainwave-based recommender system in our research. The system architecture can be used in the developments of other information systems, such as merchandises recommender systems in e-stores. With the advance of wearable technology, the EEG will be getting more popular, and more brainwave-based information systems will be developed and applied. Originality/value-We have highlighted a new research direction to design the recommender systems based on brainwave. With the development of NeuroIS, the applications of neuroscience in information systems research is getting popular. Our research provides a new methodology to design a brainwave-based information systems, and it is contributive to NeuroIS. |
主题分类 |
基礎與應用科學 >
資訊科學 社會科學 > 管理學 |
参考文献 |
|
被引用次数 |