题名

基於中文語法規則的情感評價單元抽取方法之研究

并列篇名

A Study of Opinion Unit Extraction Based on Chinese Syntactic Rules

作者

蕭瑞祥(Ruey-Shiang Shaw);姜青山(Qing-Shan Jiang);曹金豐(Chin-Feng Tsao);陳柏翰(Po-Han Chen)

关键词

情感分析 ; 意見單元 ; 句法路徑 ; 類神經網路 ; sentiment analysis ; opinion unit ; syntactic path ; artificial neural network

期刊名称

資訊管理學報

卷期/出版年月

22卷3期(2015 / 07 / 01)

页次

243 - 272

内容语文

繁體中文

中文摘要

隨著Web 2.0的概念被提出,加上近年來社群媒體興起,情感分析(sentimentanalysis)逐漸成為新興研究的趨勢,其相關研究與應用的價值也越來越重要。意見單元(或稱情感評價單元)是評價語句中的評價對象及其對應的意見詞的組合,由於意見單元決定了此評價的意見傾向,因此意見單元的抽取是為情感分析領域的重要任務之一。本研究採用系統發展研究法建置一套基於語句層級中文語法規則的意見單元抽取方法之雛型系統,並使用資料探勘技術歸納出意見單元的抽取規則,以建立意見單元抽取模式。研究以「智慧型手機」產品的評論文章驗證方法架構,實驗結果發現,同時使用語句結構與句法路徑結構作特徵屬性,有助於本系統意見單元抽取模式品質的提升,且語句結構在意見單元抽取較句法路徑結構具影響性。研究結果顯示,本研究所建立的意見單元抽取模式,與相關研究的意見單元抽取方法比較,具有較佳的F-Measure值。

英文摘要

Purpose- Through Web 2.0 concepts being advocated to bring about internet opinion groups growing in recent years, the field of Chinese Sentiment Analysis related research has expected more attention and value. Opinion Unit (or Appraisal Entity) is to define the association of opinion words and their corresponding subjects. Because of the opinion unit regulates the polarity of comments, extracting and analyzing opinion units is significant task for the field study of Chinese Sentiment Analysis. Design/methodology/approach- This paper used the systems development process in information systems research to build a prototype system of a method of opinion unit recognition based on the syntactic rules in Chinese we proposed, and used the techniques of data mining to summarize opinion unit recognition rules to establish an opinion unit extracting mode. Findings- The study subjected to smartphonediscussing comments was used to test our method of opinion unit recognition and the experiment indicated using the sentence structure and syntactic path structures as feature attributes would contribute to opinion unit extracting mode, and the statement structure was more influential in the opinion unit recognition rules. Results showed that our opinion unit extraction mode is better than correlation studies in F-Measure. Research limitations/implications- This paper focuses on the discussing comments related to smartphone appraisal group. Hence, it is suggested that future research may apply our method of opinion unit extracting mode to other areas, such as computer, car or food. Also, future research is recommended to compare with using other data mining classification, such as SVM, Decision Tree, K-NN or Bayesian Statistics. Practical implications- This paper proposes the extraction principle of opinion unit. In commerce, it may apply to the sentiment analysis of products usage discussing comments. Also, future research may use the proposed attribute of statement structure and attribute of syntactic path structures to make an extensive study. Originality/value- This paper proposes a method of opinion unit extraction based on statement level that can be applied to the discussing comments about smartphone appraisal group. Also, it implement the method and use data mining classification with attribute of statement structure and attribute of syntactic path structures to fulfill a rule of opinion unit extraction.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. ACNielsen ( 2009 ) , AC 尼爾森研究: 口碑行銷極具廣告說服力,http://tw.nielsen.com/site/news20090716.shtml(存取日期2013/01/15)。
  2. 台灣大學自然語言處理實驗室( 2007 ) , 台大意見詞典( NTUSD ) ,http://nlg18.csie.ntu.edu.tw:8080/opinion/pub1.html(存取日期2012/12/25)
  3. 中央研究院詞庫小組( 1998 ) , 中研院平衡語料庫詞類標記集,http://ckipsvr.iis.sinica.edu.tw/papers/category_list.doc(存取日期2013/01/20)。
  4. Aleksander, I.,Morton, H.B.,Myers, C.E.(1990).HCI: a cognitive neural net prospects.Proceedings of the IEEE Colloquium,South America:
  5. Bloom, K.,Garg, N.,Argamon, S.(2007).Extracting appraisal expressions.Proceedings of NAACL HLT,Rochester, New York, USA:
  6. Fish, K.E.,Barnes, J.H.,Aiken, M.W.(1995).Artificial neural networks: a new methodology for industrial market segmentation.Industrial Marketing Management,24(5),431-438.
  7. Hu, M. ,Liu, B.(2004).Mining opinion features in customer reviews.Proceedings of the 19th National Conference on Artificial Intelligence (AAAI 2004),San Jose, USA:
  8. Hu, M.,Liu, B.(2004).Mining and summarizing customer reviews.Proceedings of the 10th ACM International Conference on Knowledge Discovery and Data Mining (KDD 2004),Seattle, Washington, USA:
  9. Huang, Y.H.,Pu, X.J.,Yuan, C.F.,Wu, G.S.(2011).Appraisal expression extraction based on parse tree structure.Application Research of Computers,28(9),3229-3234.
  10. Kim, S.M.,Hovy, E.(2004).Determining the sentiment of opinions.Proceedings of the 20th international conference on Computational Linguistics. Association for Computational Linguistics (COLING 2004),Geneva, Switzerland:
  11. Kobayashi, N.,Inui, K.,Matsumoto, Y.(2007).Opinion mining from web documents: Extraction and structurization.Transactions of the Japanese Society for Artificial Intelligence,22(2),227-238.
  12. Kobayashi, N.,Inui, K.,Matsumoto, Y.,Tateishi, K.,Fukushima, T.(2004).Collecting evaluative expressions for opinion extraction.Proceedings of the International Joint Conference on Natural Language Processing (IJCNLP 2004),New York, USA:
  13. Landis, J.R.,Koch, G.G.(1977).The measurement of observer agreement for categorical data.Biometrics,33(1),159-174.
  14. Larsen, B.,Aone, C.(1999).Fast and effective text mining using linear-time document clustering.Proceedings of the 5th ACM SIGKDD,San Diego, CA, USA:
  15. Liu, B.,Hu, M.,Cheng, J.(2005).Opinion observer: analyzing and comparing opinions on the web.Proceedings of the 14th international Conference on World Wide Web (WWW 2005),Chiba, Japan:
  16. Morinaga, S.,Yamanishi, K.,Tateishi, K.,Fukushima, T.(2002).Mining product reputations on the Web.Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining,Edmonton, Alberta, Canada:
  17. Nitin, I.(Ed.),Fred, J.D. (Ed.)(2010).Handbook of Natural Language Processing.Boca Raton, FL:CRC Press, Taylor and Francis Group.
  18. Nunamaker, J.F.Jr,Chen, M.,Purdin, T.D.M.(1990).Systems Development in Information Systems Research.Journal of Management Information Systems,7(3),89-106.
  19. Popescu, A.M.,Etzioni, O.(2005).Extracting product features and opinions from reviews.Proceedings of the Human Language Technology Conference and the Conference on Empirical Methods in Natural Language Processing,Vancouver, B.C., Canada:
  20. Qiu, G.,Liu, B.,Bu, J.,Chen, C.(2011).Opinion word expansion and target extraction through double propagation.Journal of Computational Linguistics,37(1),9-27.
  21. Qu, L.,Toprak, C.,Jakob, N.,Gurevych, I.(2008).Sentence Level Subjectivity and Sentiment Analysis Experiments in NTCIR-7 MOAT Challenge.Proceedings of NTCIR-7 Workshop Meeting,Tokyo, Japan:
  22. Scaffidi, C., Bierhoff, K.,Chang, E.,Felker, M.,Ng, H.,Jin, C.(2007).Red opal: product-feature scoring from reviews.Proceedings of the 8th ACM conference on Electronic commerce,San Diego, CA, USA:
  23. Turban, E.,Sharda, R.,Delen, D.(2011).Decision support and business intelligence systems.USA:Pearson Education.
  24. Wu, Y.,Zhang, Q.,Huang, X.,Wu, L.(2009).Phrase dependency parsing for opinion mining.Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP 2009),Singapore:
  25. Zhao, Y.Y.,Qin, B.,Che, W.X.,Liu, T.(2011).Appraisal expression recognition with syntactic path for sentence sentiment classification.International Journal of Computer Processing of Languages,23(1),21-37.
  26. 王正豪、李啟菁(2010)。碩士論文(碩士論文)。臺北市,國立臺北科技大學資訊工程研究所。
  27. 李林琳(2008)。碩士論文(碩士論文)。上海市,上海交通大學電子資訊與電氣工程學院電腦系。
  28. 邱皓政(2010)。量化研究與統計分析。臺北市:五南圖書出版公司。
  29. 唐都鈺(2012)。碩士論文(碩士論文)。哈爾濱市,哈爾濱工業大學電腦科學技術研究所。
  30. 楊盛帆(2009)。碩士論文(碩士論文)。桃園縣,元智大學資訊管理研究所。
  31. 葉怡成(2001)。應用類神經網路。臺北市:儒林圖書有限公司。
  32. 簡之文(2012)。碩士論文(碩士論文)。新北市,淡江大學資訊管理研究所。
被引用次数
  1. 楊亨利、林青峰(2017)。微網誌短句的情感指數分析-以新浪微博為例。資訊管理學報,24(1),1-28。