题名

微網誌短句的情感指數分析-以新浪微博為例

并列篇名

Estimating Emotion Index of Short Sentences in a Microblog Website-Taking Weibo.com as an Example

作者

楊亨利(Heng-Li Yang);林青峰(Qing-Feng Lin)

关键词

微網誌 ; 情緒分析 ; 意見分析 ; 情感指數 ; 演化策略 ; microblog ; emotion mining ; opinion mining ; index of emotion

期刊名称

資訊管理學報

卷期/出版年月

24卷1期(2017 / 01 / 01)

页次

1 - 28

内容语文

繁體中文

中文摘要

隨著個人網誌與社群網路的發展,從個人社群網誌去分析發言資料、互動記錄、交友狀況等最後找出可用的規則,已成為熱門的分析應用。本研究經由分析作者在微網誌發表的狀態文句,希望除了能找出作者的正/負面意見傾向外,更進一步能瞭解作者撰文時可能蘊含的情緒。我們提出一個新的方法,以大陸的新浪微博為例,首先利用演化策略的方法,我們可以建立對微網誌作者正向情緒分類器與負向情緒分類器。若有需要,正負向亦可區分為非常正/非常負向、正/負向兩類別。實驗結果顯示,我們分類的效果在精準率、召回率、F1 分數均達令人滿意水準。其次,我們開發了能找出作者的情感指數推估系統;該系統利用迴歸方法可經由分析作者在其微網誌上輸入的狀態文句,推估作者想表達的心情,給予一個幸福指數;其他的情感(如:喜樂、憤怒、悲傷、厭噁、恐懼)指數也能類似地建立。

英文摘要

Purpose- This study aims to propose an approach for mining positive/negative opinions and estimating an emotion index of sentences in microblog website. Design/methodology/approach- After reviewing the related literatures, we proposed an ontology-based approach by using ConceptNet and evolution strategic for mining positive/negative opinions from short sentences posted in a microblog, Weibo.com. Applying regression analysis, we also built a prototype system to estimate its implied emotion. Findings- Using the experiment data, we can build a positive classifier to provide positive sentiment cluster and negative classifier to provide negative sentiment cluster with five or three scales. The levels of precision and recall rates, and F1 scores for those classifiers are satisfactory. In addition, our system can give an index of happiness. Research limitations/implications- The future study can collect more sentences for testing and try other micro-blog or regular blog sites. The efficiency can be also further enhanced. Practical implications- Practically, businesses can apply our proposed approach to understand the emotion of the customers after purchasing their products/services. Social workers or police departments might identify persons with suicidal potentials at the early stage from the web. Originality/value- The academic contribution is to propose a new approach to discover possible emotion.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. 蕭瑞祥、姜青山、曹金豐、陳柏翰(2015)。基於中文語法規則的情感評價單元抽取方法之研究。中華民國資訊管理學報,22(3),243-272。
    連結:
  2. 賴正育、楊亨利(2012)。微網誌使用的需求動機及其影響。中華民國資訊管理學報,19(1),81-103。
    連結:
  3. Aggarwal, C.C.(Ed.),Zhai, C-X(Ed.)(2012).Mining Text Data.New York City:Springer.
  4. Beyer, H.G.,Schwefel, H.P.(2002).Evolution strategies-a comprehensive introduction.Natural Computing,1(1),3-52.
  5. Chaovalit, P.,Zhou, L.(2005).Movie review mining: a comparison between supervised and unsupervised classification approaches.Proceedings of The 38th Hawaii International Conference on System Sciences(HICSS'05),Island of Hawaii, Hawaii, U.S.A.:
  6. Dave, K.,Lawrence, S.,Pennock, D.M.(2003).Mining the peanut gallery: opinion extraction and semantic classification of product reviews.Proceedings of International Conference of World Wide Web,Budapest, Hungary:
  7. Hu, M.,Liu, B.(2004).Mining and summarizing customer reviews.Proceedings of The 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'04),Seattle, WA, USA:
  8. Hu, M.,Liu, B.(2004).Mining opinion features in customer reviews.Proceedings of the 19th International Conference on Artifical Intelligence (AAAI'04),San Jose, California:
  9. Java, A.,Song X.,Finin, T.,Tseng, B.(2009).Why we twitter: An analysis of a microblogging community.Advances in Web Mining and Web Usage Analysis,Berlin Heidelberg:
  10. Kontopoulos, E.,Berberidis, C.,Dergiades, T.,Bassiliades, N.(2013).Ontology-based sentiment analysis of twitter posts.Expert Systems with Applications,40(10),4065-4074.
  11. Li, N.,Wu, D.D.(2010).Using text mining and sentiment analysis for online forums hotspot detection and forecast.Decision Support Systems,48(2),354-368.
  12. Liu, H.,Singh, P.(2004).Focusing on ConceptNet's natural language knowledge representation.Proceedings of the 8th International Conference on Knowledge- Based Intelligent Information & Engineering Systems (KES'2004),Wellington, New Zealand:
  13. Missen, M.M. S.,Boughanem, M.,Cabanac, G.(2013).Opinion mining: reviewed from word to document level.Social Network Analysis and Mining,3(1),107-125.
  14. Mostafa, M.M.(2013).More Than Words: Social Networks' Text mining for consumer brand sentiments.Expert Systems with Applications,40(10),4241-4251.
  15. Nitin, I.(Ed.),Fred, J.D.(Ed.)(2010).Handbook of Natural Language Processing.Boca Raton, FL:CRC Press, Taylor and Francis Group.
  16. Ortony, A.,Turner, T.J.(1990).What's Basic About Basic Emotions?.Psychological Review,97,315-331.
  17. Pak, A.,Paroubek, P.(2010).Twitter as a corpus for sentiment analysis and opinion mining.Proceedings of the 7th International Conference on Language Resources and Evaluation
  18. Pang, B.,Lee, L.(2008).Opinion mining and sentiment analysis.Foundations and Trends in Information Retrieval,12(1-2),1-135.
  19. Pang, B.,Lee, L.,Vaithyanathan, S.(2002).Thumbs up? Sentiment classification using machine learning techniques.Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP),East Stroudsburg, PA:
  20. Sokolova, M.,Lapalme, G.(2009).A systematic analysis of performance measures for classification tasks.Information Processing and Management,45(4),427-437.
  21. Tsou, B.K.Y.,Yuen, R.W.M.,Kwong, O.Y.,Lai, T.B.Y.,Wong, W.L.(2005).Polarity classification of celebrity coverage in the Chinese press.Proceedings of International Conference on Intelligence Analysis,McLean, VA, USA:
  22. Turney, P.D.,Littman, M.L.(2003).Measuring praise and criticism: Inference of semantic orientation from association.ACM Transactions on Information Systems,21,315-346.
  23. Weng, J.Y.,Yang, C.L.,Chen, B.N.,Wang, Y.K.,Lin, S.D.(2011).IMASS: an intelligent microblog analysis and summarization system.Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Systems Demonstrations, Oregon, Portland, June 19-24,PA:
  24. Wiebe, J.,Riloff, E.(2005).Creating subjective and objective sentence classifiers from unannotated texts.Proceedings of the Sixth International Conference on Intelligent Text Processing and Computational Linguistics (CICLoing 2005),Mexico City, Mexico:
  25. Yan, X.,Wang, J.,Chan, M.(2013).Customer revisit intention to restaurants: Evidence from online reviews.Information Systems Frontiers,17(3),645-657.
  26. Ye, Q.,Shi, W.,Li, Y.(2006).Sentiment classification for movie reviews in Chinese in improved semantic oriented approach.Proceedings of the 39th Hawaii International Conference on System Sciences, Hyatt Regency, Kauai, Hawaii, U.S.A., January 4-7
  27. Yuen, R.W.M.,Chan, T.Y.W.,Lai, T.B.Y.,Kwong, O.Y.,T'sou, B.K.Y.(2004).Morpheme-based derivation of bipolar semantic orientation of Chinese words.Proceedings of the 20th International Conference on Computational Linguistics (COLING'04), Geneva, Switzerland, August 23-27,East Stroudsburg, PA:
  28. Zhang, C.,Zeng, D.,Li, J.,Wang, F.Y.,Zuo, W.(2009).Sentiment analysis of Chinese documents: From sentence to document level.Journal of the American Society for Information Science and Technology,60(12),2474-2487.
  29. Zhang, L.,Liu, B.(2011).Indentifying noun product features that imply opinions.Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACLHLT'11),Oregon, Portland:
被引用次数
  1. 楊亨利,林青峰(2018)。應用網路評價的功能商品推薦系統。資訊管理學報,25(3),335-361。
  2. 楊亨利,林青峰(2020)。針對情感商品的推薦機制-以流行音樂為例。資訊管理學報,27(2),175-204。
  3. (2019)。大學生網路社群平臺巨量資料探勘之應用。教育與心理研究,42(3),79-109。