题名

應用機器學習與模糊推論於股價漲跌預測之研究

并列篇名

A Study on Application of Machine Learning and Fuzzy Inference for the Prediction of Stock Price

作者

陳振東(Chen-Tung Chen);謝政翰(Jheng-Han Sie)

关键词

金融科技 ; 股價漲跌預測 ; 機器學習演算法 ; 模糊推論預測系統 ; FinTech ; stock price forecasting ; machine learning ; fuzzy inference forecasting system

期刊名称

資訊管理學報

卷期/出版年月

26卷2期(2019 / 04 / 30)

页次

153 - 177

内容语文

繁體中文

中文摘要

近年來,利用智慧數據分析方法以預測股價乃是金融科技(Financial Technology; FinTech)領域的重要議題。然而,有許多的技術指標以及人為主觀因素會影響股價的漲跌預測,因此必須有效掌握重要的影響指標,才能提高股價漲跌預測的正確率。為此,本研究透過技術指標的篩選程序,使用四種機器學習演算法進行股價漲跌的預測分析,進而篩選重要的技術指標。此外,由於技術指標的屬性及人為的主觀判斷具有不確定性與模糊性,因此本研究應用模糊推論方法建構模糊推論系統以進行股價漲跌的預測,並提出股價漲跌幅度區間的預測方法。最後,本研究針對三家公司的股價資料進行實證分析,研究結果顯示股價漲跌預測的正確率都達82.13%以上,三家公司股票價格的漲跌幅度區間涵蓋真實股價的平均預測正確率都高達83%以上。由此可知,本研究所提出的模糊推論預測系統不僅具有學理基礎,同時能夠有效預測股票的漲跌趨勢及漲跌幅區間,對投資人具有實務應用的價值與貢獻。

英文摘要

Purpose-The purpose of this study is to propose a fuzzy inference forecasting system to predict the variation of stock price of each company and the stock price fluctuation range. Design/methodology/approach-In this study, four machine learning algorithms are used to predict the stock prices and select the important technical indicators. And then, this study applies fuzzy inference to construct a fuzzy inference system to predict stock price fluctuation based on the critical technical indices. Findings-The results of case study showed that the accuracy of the stock price fluctuation is more than 82.13% for three companies. In addition, this study also proposes a new method for predicting the stock price fluctuation range. The research results show that the prediction accuracy rate of stock price intervals are more than 83% for three companies. Research limitations/implications-This study focused on the numeral data of technical indicators but not non-numeral data in the fuzzy inference system to predict stock price fluctuation. Future research can combine different data types to construct the prediction model of stock price. Practical implications - According to the fuzzy inference forecasting system, investors can use only the five technical indices to predict the fluctuation trend and the interval of the stock price. The prediction accuracy rate of stock price intervals are good enough for investors. Originality/value-The fuzzy inference forecasting system proposed in this study not only have the academic values, but also can effectively predict the fluctuation trend and the interval of the stock price, and the contributions of practical applications for investors.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Adeniyi, D.A.,Wei, Z.,Yongquan, Y.(2016).Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method.Applied Computing and Informatics,12(1),90-108.
  2. Anderson, D.R.,Sweeney, D.J.,Williams, T.A.,Camm, J.D.,Cochran, J.J.(2014).Statistics for Business and Economics.Annotated Education.
  3. Arora, P.,Varshney, S.(2016).Analysis of K-means and K-medoids algorithm for big data.Procedia Computer Science,78,507-512.
  4. Atsalakis, G.S.,Valavanis, K.P.(2009).Forecasting stock market short-term trends using a neuro-fuzzy based methodology.Expert Systems with Applications,36(7),10696-10707.
  5. Chang, P.C.(2012).A novel model by evolving partially connected neural network for stock price trend forecasting.Expert Systems with Applications,39(1),611-620.
  6. Chen, M.Y.,Chen, B.T.(2015).A hybrid fuzzy time series model based on granular computing for stock price forecasting.Information Sciences,294,227-241.
  7. Chen, Y.,Hao, Y.(2017).A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction.Expert Systems with Applications,80,340-355.
  8. Chourmouziadis, K.,Chatzoglou, P.D.(2016).An intelligent short term stock trading fuzzy system for assisting investors in portfolio management.Expert Systems with Applications,43,298-311.
  9. Cortes, C.,Vapnik, V.(1995).Support-vector networks.Machine Learning,20(3),273-297.
  10. Dash, R.,Dash, P.(2016).Efficient stock price prediction using a self evolving recurrent neuro-fuzzy inference system optimized through a modified technique.Expert Systems with Applications,52,75-90.
  11. Demirbag, M.,McGuinness, M.,Akin, A.,Bayyurt, N.,Basti, E.(2016).The professional service firm (PSF) in a globalised economy: A study of the efficiency of securities firms in an emerging market.International Business Review,25(5),1089-1102.
  12. Deng, X.,Liu, Q.,Deng, Y.,Mahadevan, S.(2016).An improved method to construct basic probability assignment based on the confusion matrix for classification problem.Information Sciences,340-341,250-261.
  13. Escobar, A.,Moreno, J.,Múnera, S.(2013).A technical analysis indicator based on fuzzy logic.Electronic Notes in Theoretical Computer Science,292,27-37.
  14. Ghadimi, P.,Dargi, A.,Heavey, C.(2017).Sustainable supplier performance scoring using audition check-list based fuzzy inference system: A case application in automotive spare part industry.Computers & Industrial Engineering,105,12-27.
  15. Hadavandi, E.,Shavandi, H.,Ghanbari, A.(2010).Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting.Knowledge-Based Systems,23(8),800-808.
  16. Han, J.,Kamber, M.,Pei, J.(2011).Data Mining: Concepts and Techniques.Elsevier.
  17. Kang, S.,Kang, P.,Ko, T.,Cho, S.,Rhee, S.J.,Yu, K.S.(2015).An efficient and effective ensemble of support vector machines for anti-diabetic drug failure prediction.Expert Systems with Applications,42(9),4265-4273.
  18. Kara, Y.,Boyacioglu, M.A.,Baykan, Ö.K.(2011).Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange.Expert Systems with Applications,38(5),5311-5319.
  19. Keramati, A.,Jafari-Marandi, R.,Aliannejadi, M.,Ahmadian, I.,Mozaffari, M.,Abbasi, U.(2014).Improved churn prediction in telecommunication industry using data mining techniques.Applied Soft Computing,24,994-1012.
  20. Kesemen, O.,Tezel, Ö.,Özkul, E.(2016).Fuzzy c-means clustering algorithm for directional data (FCM4DD).Expert Systems with Applications,58,76-82.
  21. Kim, H.Y.,Won, C.H.(2018).Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCJ-type models.Expert Systems with Applications,103,25-37.
  22. Laboissiere, L.A.,Fernandes, R.A.,Lage, G.G.(2015).Maximum and minimum stock price forecasting of Brazilian power distribution companies based on artificial neural networks.Applied Soft Computing,35,66-74.
  23. Lahmiri, S.(2014).Entropy-based technical analysis indicators selection for international stock markets fluctuations prediction using support vector machines.Fluctuation and Noise Letters,13(2),1-16.
  24. Lahmiri, S.(2016).Intraday stock price forecasting based on variational mode decomposition.Journal of Computational Science,12,23-27.
  25. Li, Johnny S.H.,Ng, Andrew. W.,Chan, W.S.(2015).Managing financial risk in Chinese stock markets: Option pricing and modeling under a multivariate threshold autoregression.International Review of Economics and Finance,40,217-230.
  26. Lincy, G.R.M.,John, C.J.(2016).A multiple fuzzy inference systems framework for daily stock trading with application to NASDAQ stock exchange.Expert Systems with Applications: An International Journal,44,13-21.
  27. Mo, H.,Wang, J.,Niu, H.(2016).Exponent back propagation neural network forecasting for financial cross-correlation relationship.Expert Systems with Applications,53(53),106-116.
  28. Patel, J.,Shah, S.,Thakkar, P.,Kotecha, K.(2015).Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques.Expert Systems with Applications,42(1),259-268.
  29. Patel, J.,Shah, S.,Thakkar, P.,Kotecha, K.(2015).Predicting stock market index using fusion of machine learning techniques.Expert Systems with Applications,42(4),2162-2172.
  30. Shim, Y.,Shin, D.H.(2016).Analyzing China's Fintech Industry from the Perspective of Actor-Network Theory.Telecommunications Policy,40(2-3),168-181.
  31. Valdez, F.,Melin, P.,Castillo, O.(2014).Modular neural networks architecture optimization with a new nature inspired method using a fuzzy combination of particle swarm optimization and genetic algorithms.Information Sciences,270,143-153.
  32. Vapnik, V.,Golowich, S.E.,Smola, A.(1997).Support vector method for function approximation, regression estimation, and signal processing.Advances in Neural Information Processing Systems,281-287.
  33. Wang, J.,Hou, R.,Wang, C.,Shen, L.(2016).Improved v-Support vector regression model based on variable selection and brain storm optimization for stock price forecasting.Applied Soft Computing,49,164-178.
  34. Wang, J.,Pan, H.,Liu, F.(2012).Forecasting crude oil price and stock price by jump stochastic time effective neural network model.Journal of Applied Mathematics,2012,1-15.
  35. Yu, H.H.,Fang., L.I.,Sun, W.C.(2018).Forecasting performance of global economic policy uncertainty for volatility of Chinese stock market.Physica A,505(1),931-940.
  36. Yu, X.,Ye, C.,Xiang, L.(2016).Application of artificial neural network in the diagnostic system of osteoporosis.Neurocomputing,214(1),376-381.
  37. Zhang, Y.,Zeng, Q.,Ma, F.,Shi, B.(2018).Forecasting stock returns: Do less powerful predictors help.Economic Modelling,1-8.
  38. 李允中,王小潘,蘇木春(2008).模糊理論及其應用.新北市:全華圖書股份有限公司.
  39. 曹磊,錢海利(2016).FinTech 金融科技革命.台北:商周出版家庭傳媒城邦分公司.
  40. 陳鄢貞(2011)。台北,國立台北大學國際財務金融研究所。
  41. 廖日昇(2012).我的第一本圖解技術分析.台北市:創智文化有限公司.
  42. 鄭健毅(2010)。新竹縣,明新科技大學工業工程與管理研究所。
  43. 簡禎富,許嘉裕(2014).資料挖礦與大數據分析.新北市:前程文化事業有限公司.
被引用次数
  1. (2024)。以時間卷積網路結合長短期記憶模型預測股價:臺股預測實證。資訊管理學報,31(2),177-207。