参考文献
|
-
Adeniyi, D.A.,Wei, Z.,Yongquan, Y.(2016).Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method.Applied Computing and Informatics,12(1),90-108.
-
Anderson, D.R.,Sweeney, D.J.,Williams, T.A.,Camm, J.D.,Cochran, J.J.(2014).Statistics for Business and Economics.Annotated Education.
-
Arora, P.,Varshney, S.(2016).Analysis of K-means and K-medoids algorithm for big data.Procedia Computer Science,78,507-512.
-
Atsalakis, G.S.,Valavanis, K.P.(2009).Forecasting stock market short-term trends using a neuro-fuzzy based methodology.Expert Systems with Applications,36(7),10696-10707.
-
Chang, P.C.(2012).A novel model by evolving partially connected neural network for stock price trend forecasting.Expert Systems with Applications,39(1),611-620.
-
Chen, M.Y.,Chen, B.T.(2015).A hybrid fuzzy time series model based on granular computing for stock price forecasting.Information Sciences,294,227-241.
-
Chen, Y.,Hao, Y.(2017).A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction.Expert Systems with Applications,80,340-355.
-
Chourmouziadis, K.,Chatzoglou, P.D.(2016).An intelligent short term stock trading fuzzy system for assisting investors in portfolio management.Expert Systems with Applications,43,298-311.
-
Cortes, C.,Vapnik, V.(1995).Support-vector networks.Machine Learning,20(3),273-297.
-
Dash, R.,Dash, P.(2016).Efficient stock price prediction using a self evolving recurrent neuro-fuzzy inference system optimized through a modified technique.Expert Systems with Applications,52,75-90.
-
Demirbag, M.,McGuinness, M.,Akin, A.,Bayyurt, N.,Basti, E.(2016).The professional service firm (PSF) in a globalised economy: A study of the efficiency of securities firms in an emerging market.International Business Review,25(5),1089-1102.
-
Deng, X.,Liu, Q.,Deng, Y.,Mahadevan, S.(2016).An improved method to construct basic probability assignment based on the confusion matrix for classification problem.Information Sciences,340-341,250-261.
-
Escobar, A.,Moreno, J.,Múnera, S.(2013).A technical analysis indicator based on fuzzy logic.Electronic Notes in Theoretical Computer Science,292,27-37.
-
Ghadimi, P.,Dargi, A.,Heavey, C.(2017).Sustainable supplier performance scoring using audition check-list based fuzzy inference system: A case application in automotive spare part industry.Computers & Industrial Engineering,105,12-27.
-
Hadavandi, E.,Shavandi, H.,Ghanbari, A.(2010).Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting.Knowledge-Based Systems,23(8),800-808.
-
Han, J.,Kamber, M.,Pei, J.(2011).Data Mining: Concepts and Techniques.Elsevier.
-
Kang, S.,Kang, P.,Ko, T.,Cho, S.,Rhee, S.J.,Yu, K.S.(2015).An efficient and effective ensemble of support vector machines for anti-diabetic drug failure prediction.Expert Systems with Applications,42(9),4265-4273.
-
Kara, Y.,Boyacioglu, M.A.,Baykan, Ö.K.(2011).Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange.Expert Systems with Applications,38(5),5311-5319.
-
Keramati, A.,Jafari-Marandi, R.,Aliannejadi, M.,Ahmadian, I.,Mozaffari, M.,Abbasi, U.(2014).Improved churn prediction in telecommunication industry using data mining techniques.Applied Soft Computing,24,994-1012.
-
Kesemen, O.,Tezel, Ö.,Özkul, E.(2016).Fuzzy c-means clustering algorithm for directional data (FCM4DD).Expert Systems with Applications,58,76-82.
-
Kim, H.Y.,Won, C.H.(2018).Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCJ-type models.Expert Systems with Applications,103,25-37.
-
Laboissiere, L.A.,Fernandes, R.A.,Lage, G.G.(2015).Maximum and minimum stock price forecasting of Brazilian power distribution companies based on artificial neural networks.Applied Soft Computing,35,66-74.
-
Lahmiri, S.(2014).Entropy-based technical analysis indicators selection for international stock markets fluctuations prediction using support vector machines.Fluctuation and Noise Letters,13(2),1-16.
-
Lahmiri, S.(2016).Intraday stock price forecasting based on variational mode decomposition.Journal of Computational Science,12,23-27.
-
Li, Johnny S.H.,Ng, Andrew. W.,Chan, W.S.(2015).Managing financial risk in Chinese stock markets: Option pricing and modeling under a multivariate threshold autoregression.International Review of Economics and Finance,40,217-230.
-
Lincy, G.R.M.,John, C.J.(2016).A multiple fuzzy inference systems framework for daily stock trading with application to NASDAQ stock exchange.Expert Systems with Applications: An International Journal,44,13-21.
-
Mo, H.,Wang, J.,Niu, H.(2016).Exponent back propagation neural network forecasting for financial cross-correlation relationship.Expert Systems with Applications,53(53),106-116.
-
Patel, J.,Shah, S.,Thakkar, P.,Kotecha, K.(2015).Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques.Expert Systems with Applications,42(1),259-268.
-
Patel, J.,Shah, S.,Thakkar, P.,Kotecha, K.(2015).Predicting stock market index using fusion of machine learning techniques.Expert Systems with Applications,42(4),2162-2172.
-
Shim, Y.,Shin, D.H.(2016).Analyzing China's Fintech Industry from the Perspective of Actor-Network Theory.Telecommunications Policy,40(2-3),168-181.
-
Valdez, F.,Melin, P.,Castillo, O.(2014).Modular neural networks architecture optimization with a new nature inspired method using a fuzzy combination of particle swarm optimization and genetic algorithms.Information Sciences,270,143-153.
-
Vapnik, V.,Golowich, S.E.,Smola, A.(1997).Support vector method for function approximation, regression estimation, and signal processing.Advances in Neural Information Processing Systems,281-287.
-
Wang, J.,Hou, R.,Wang, C.,Shen, L.(2016).Improved v-Support vector regression model based on variable selection and brain storm optimization for stock price forecasting.Applied Soft Computing,49,164-178.
-
Wang, J.,Pan, H.,Liu, F.(2012).Forecasting crude oil price and stock price by jump stochastic time effective neural network model.Journal of Applied Mathematics,2012,1-15.
-
Yu, H.H.,Fang., L.I.,Sun, W.C.(2018).Forecasting performance of global economic policy uncertainty for volatility of Chinese stock market.Physica A,505(1),931-940.
-
Yu, X.,Ye, C.,Xiang, L.(2016).Application of artificial neural network in the diagnostic system of osteoporosis.Neurocomputing,214(1),376-381.
-
Zhang, Y.,Zeng, Q.,Ma, F.,Shi, B.(2018).Forecasting stock returns: Do less powerful predictors help.Economic Modelling,1-8.
-
李允中,王小潘,蘇木春(2008).模糊理論及其應用.新北市:全華圖書股份有限公司.
-
曹磊,錢海利(2016).FinTech 金融科技革命.台北:商周出版家庭傳媒城邦分公司.
-
陳鄢貞(2011)。台北,國立台北大學國際財務金融研究所。
-
廖日昇(2012).我的第一本圖解技術分析.台北市:創智文化有限公司.
-
鄭健毅(2010)。新竹縣,明新科技大學工業工程與管理研究所。
-
簡禎富,許嘉裕(2014).資料挖礦與大數據分析.新北市:前程文化事業有限公司.
|